Skip to main content

Advertisement

Log in

CD200 in growing rat lungs: developmental expression and control by dexamethasone

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

CD200 belongs to cell adhesion molecules of the immunoglobulin superfamily. It lacks intracellular signaling motifs and exerts immunosuppressive effect in various tissues. We have reported previously that CD200 is predominantly associated with the capillary network in the alveolar septum of adult rats. The alveolar endothelial cells express CD200, which is confined to their luminal cell membrane facing the blood-air barrier. Our present results show that lung CD200 protein increases gradually with advancing age, being maximally expressed in the early postnatal (P) period. CD200 protein expression, however, declines at P5 but increases again after P7, reaching the adult level at P21. In developing lungs in fetal and neonatal stages, double-immunofluorescence staining has confirmed intense CD200 immunoreactivity delineating the vascular profiles in the double layers of the alveolar capillaries; this staining becomes diffuse and patchy with time. Unlike in adult lungs, immunoelectron microscopy has revealed that CD200 expression in fetal and early postnatal lungs is localized over the entire luminal cell membrane and in the cytoplasm of the endothelia. CD200 expression is progressively redistributed to a specific luminal domain of alveolar endothelia during pulmonary microvascular maturation. In neonatal rats treated with dexamethasone, the amount of lung CD200 significantly increases and is also elevated with time. Upregulation of endothelial CD200 has further been confirmed in isolated pulmonary microvascular endothelial cells treated with dexamethasone. Thus, lung CD200 is developmentally regulated, possibly under hormonal influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Attar MA, Bailie MB, Christensen PJ, Brock TG, Wilcoxen SE, Paine R 3rd (1999) Induction of ICAM-1expression on alveolar epithelial cells during lung development in rats and humans. Exp Lung Res 25:245–259

    Article  PubMed  CAS  Google Scholar 

  • Barclay AN (1981) Different reticular elements in rat lymphoid tissue identified by localization of Ia, Thy-1 and MRC OX 2 antigens. Immunology 44:727–736

    PubMed Central  PubMed  CAS  Google Scholar 

  • Barclay AN (2003) Membrane proteins with immunoglobulin-like domains—a master superfamily of interaction molecules. Semin Immunol 15:215–223

    Article  PubMed  CAS  Google Scholar 

  • Berg T, Cassel TN, Schwarze PE, Nord M (2002) Glucocorticoids regulate the CCSP and CYP2B1 promoters via C/EBPbeta and delta in lung cells. Biochem Biophys Res Commun 293:907–912

    Article  PubMed  CAS  Google Scholar 

  • Bhatt AJ, Amin SB, Chess PR, Watkins RH, Maniscalco WM (2000) Expression of vascular endothelial growth factor and Flk-1 in developing and glucocorticoid-treated mouse lung. Pediatr Res 47:606–613

    Article  PubMed  CAS  Google Scholar 

  • Bolt RJ, van Weissenbruch MM, Lafeber HN, Delemarre-van de Waal HA (2001) Glucocorticoids and lung development in the fetus and preterm infant. Pediatr Pulmonol 32:76–91

    Article  PubMed  CAS  Google Scholar 

  • Broderick C, Hoek RM, Forrester JV, Liversidge J, Sedgwick JD, Dick AD (2002) Constitutive retinal CD200 expression regulates resident microglia and activation state of inflammatory cells during experimental autoimmune uveoretinitis. Am J Pathol 161:1669–1677

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bukovský A, Presl J, Zidovský J, Mancal P (1983) The localization of Thy-1.1, MRC OX 2 and Ia antigens in the rat ovary and fallopian tube. Immunology 48:587–596

    PubMed Central  PubMed  Google Scholar 

  • Burri PH (1984) Fetal and postnatal development of the lung. Annu Rev Physiol 46:617–628

    Article  PubMed  CAS  Google Scholar 

  • Burri PH (2006) Structural aspects of postnatal lung development—alveolar formation and growth. Biol Neonate 89:313–322

    Article  PubMed  Google Scholar 

  • Burri PH, Tarek MR (1990) A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat Rec 228:35–45

    Article  PubMed  CAS  Google Scholar 

  • Chang CY, Lee YH, Jiang-Shieh YF, Chien HF, Pai MH, Chen HM, Fong TH, Wu CH (2011) Novel distribution of cluster of differentiation 200 adhesion molecule in glial cells of the peripheral nervous system of rats and its modulation after nerve injury. Neuroscience 183:32–46

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Marsden PA, Gorczynski RM (2006) Cloning and characterization of the human CD200 promoter region. Mol Immunol 43:579–587

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Marsden PA, Gorczynski RM (2009) Role of a distal enhancer in the transcriptional responsiveness of the human CD200 gene to interferon-gamma and tumor necrosis factor-alpha. Mol Immunol 46:1951–1963

    Article  PubMed  CAS  Google Scholar 

  • Chiu JF, Massari RJ, Schwartz CE, Meisler NT, Thanassi JW (1981) Hormonal modulation of alpha-fetoprotein gene expression in newborn rat livers. Nucleic Acids Res 9:6917–6933

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Danese S, Dejana E, Fiocchi C (2007) Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J Immunol 178:6017–6022

    Article  PubMed  CAS  Google Scholar 

  • Dick AD, Broderick C, Forrester JV, Wright GJ (2001) Distribution of OX2 antigen and OX2 receptor within retina. Invest Ophthalmol Vis Sci 42:170–176

    PubMed  CAS  Google Scholar 

  • Dickie R, Tasat DR, Alanis EF, Delfosse V, Tsuda A (2009) Age-dependent changes in porcine alveolar macrophage function during the postnatal period of alveolarization. Dev Comp Immunol 33:145–151

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gorczynski RM, Cattral MS, Chen Z, Hu J, Lei J, Min WP, Yu G, Ni J (1999) An immunoadhesin incorporating the molecule OX-2 is a potent immunosuppressant that prolongs allo- and xenograft survival. J Immunol 163:1654–1660

    PubMed  CAS  Google Scholar 

  • Gorczynski RM, Hadidi S, Yu G, Clark DA (2002) The same immunoregulatory molecules contribute to successful pregnancy and transplantation. Am J Reprod Immunol 48:18–26

    Article  PubMed  Google Scholar 

  • Gordon PV, Moats-Staats BM, Stiles AD, Price WA (2002) Dexamethasone changes the composition of insulin-like growth factor binding proteins in the newborn mouse ileum. J Pediatr Gastroenterol Nutr 35:532–538

    Article  PubMed  CAS  Google Scholar 

  • Grier DG, Halliday HL (2004) Effects of glucocorticoids on fetal and neonatal lung development. Treat Respir Med 3:295–306

    Article  PubMed  CAS  Google Scholar 

  • Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290:1768–1771

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RF, Wilson CB, Palmer S, Springmeyer SC, Henderson WR, Glover DM, Kessler DL Jr, Murphy JH, Hughes JP, van Belle G, Chi EY, Hodson WA (1985) Factors related to the appearance of alveolar macrophages in the developing lung. Am Rev Respir Dis 131:548–553

    PubMed  CAS  Google Scholar 

  • Jiang-Shieh YF, Chien HF, Chang CY, Wei TS, Chiu MM, Chen HM, Wu CH (2010) Distribution and expression of CD200 in the rat respiratory system under normal and endotoxin-induced pathological conditions. J Anat 216:407–416

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ko YC, Chien HF, Jiang-Shieh YF, Chang CY, Pai MH, Huang JP, Chen HM, Wu CH (2009) Endothelial CD200 is heterogeneously distributed, regulated and involved in immune cell-endothelium interactions. J Anat 214:183–195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kolla V, Gonzales LW, Bailey NA, Wang P, Angampalli S, Godinez MH, Madesh M, Ballard PL (2009) Carcinoembryonic cell adhesion molecule 6 in human lung: regulated expression of a multifunctional type II cell protein. Am J Physiol Lung Cell Mol Physiol 296:L1019–L1030

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Koning N, Bö L, Hoek RM, Huitinga I (2007) Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol 62:504–514

    Article  PubMed  CAS  Google Scholar 

  • Lin Y, Lechner AJ (1991) Development of alveolar septa and cellular maturation within the perinatal lung. Am J Respir Cell Mol Biol 4:59–64

    Article  PubMed  CAS  Google Scholar 

  • Maeda S, Suzuki S, Suzuki T, Endo M, Moriya T, Chida M, Kondo T, Sasano H (2002) Analysis of intrapulmonary vessels and epithelial-endothelial interactions in the human developing lung. Lab Invest 82:293–301

    Article  PubMed  Google Scholar 

  • Mariani TJ, Reed JJ, Shapiro SD (2002) Expression profiling of the developing mouse lung: insights into the establishment of the extracellular matrix. Am J Respir Cell Mol Biol 26:541–548

    Article  PubMed  CAS  Google Scholar 

  • Marszalek A, Daa T, Kashima K, Nakayama I, Yokoyama S (2000) Ultrastructural and morphometric studies related to expression of the cell adhesion molecule PECAM-1/CD31 in developing rat lung. J Histochem Cytochem 48:1283–1289

    Article  PubMed  CAS  Google Scholar 

  • Marszalek A, Daa T, Kashima K, Nakayama I, Yokoyama S (2001) Quantitative immunohistochemical analysis of the expression of CD31 during lung development in the rat. Cells Tissues Organs 169:49–54

    Article  PubMed  CAS  Google Scholar 

  • Massaro D, Massaro GD (1986) Dexamethasone accelerates postnatal alveolar wall thinning and alters wall composition. Am J Physiol 251:R218–R224

    PubMed  CAS  Google Scholar 

  • McMaster WR, Williams AF (1979) Identification of Ia glycoproteins in rat thymus and purification from rat spleen. Eur J Immunol 9:426–433

    Article  PubMed  CAS  Google Scholar 

  • McMenamy KR, Anderson MJ, Zachman RD (1994) Effect of dexamethasone and oxygen exposure on neonatal rat lung retinoic acid receptor proteins. Pediatr Pulmonol 18:232–238

    Article  PubMed  CAS  Google Scholar 

  • Moschopulos M, Burri PH (1993) Morphometric analysis of fetal rat lung development. Anat Rec 237:38–48

    Article  PubMed  CAS  Google Scholar 

  • Preston S, Wright GJ, Starr K, Barclay AN, Brown MH (1997) The leukocyte/neuron cell surface antigen OX2 binds to a ligand on macrophages. Eur J Immunol 27:1911–1918

    Article  PubMed  CAS  Google Scholar 

  • Roth-Kleiner M, Berger TM, Tarek MR, Burri PH, Schittny JC (2005) Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network. Dev Dyn 233:1261–1271

    Article  PubMed  CAS  Google Scholar 

  • Rygiel TP, Rijkers ES, de Ruiter T, Stolte EH, van der Valk M, Rimmelzwaan GF, Boon L, van Loon AM, Coenjaerts FE, Hoek RM, Tesselaar K, Meyaard L (2009) Lack of CD200 enhances pathological T cell responses during influenza infection. J Immunol 183:1990–1996

    Article  PubMed  CAS  Google Scholar 

  • Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, Edwards L, Gwyer E, Sedgwick JD, Barclay AN, Hussell T (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9:1074–1083

    Article  PubMed  CAS  Google Scholar 

  • Southwood M, Jeffery TK, Yang X, Upton PD, Hall SM, Atkinson C, Haworth SG, Stewart S, Reynolds PN, Long L, Trembath RC, Morrell NW (2008) Regulation of bone morphogenetic protein signalling in human pulmonary vascular development. J Pathol 214:85–95

    Article  PubMed  CAS  Google Scholar 

  • Tsao PN, Li H, Wei SC, Ko ML, Chou HC, Hsieh WS, Hsieh FJ (2004) Expression of angiogenic factors and their receptors in postnatal mouse developing lung. J Formos Med Assoc 103:137–143

    PubMed  CAS  Google Scholar 

  • Tschanz SA, Damke BM, Burri PH (1995) Influence of postnatally administered glucocorticoids on rat lung growth. Biol Neonate 68:229–245

    Article  PubMed  CAS  Google Scholar 

  • Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF (2009) Decreased expression of CD200 and CD200 receptor in Alzheimer's disease: a potential mechanism leading to chronic inflammation. Exp Neurol 215:5–19

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang H, Mammen J, Wei W, Menconi M, Evenson A, Fareed M, Petkova V, Hasselgren PO (2005) Expression and activity of C/EBPbeta and delta are upregulated by dexamethasone in skeletal muscle. J Cell Physiol 204:219–226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ching-Hsiang Wu or Ya-Fen Jiang-Shieh.

Additional information

Mang-Hung Tsai and Chin-Chen Chu contributed equally to this study.

This study was supported in part by research grants NSC95-2320-B-016-003, 98-2320-B-039-046-MY1 ~ 3 (to C.H. Wu) and NSC96-2320-B-006-037 (to Y.F. Jiang-Shieh) from the National Science Council, Taiwan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, MH., Chu, CC., Wei, TS. et al. CD200 in growing rat lungs: developmental expression and control by dexamethasone. Cell Tissue Res 359, 729–742 (2015). https://doi.org/10.1007/s00441-014-2065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2065-8

Keywords

Navigation