Skip to main content

Advertisement

Log in

c-Src mediated tyrosine phosphorylation of plakophilin 3 as a new mechanism to control desmosome composition in cells exposed to oxidative stress

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Plakophilins (PKP1 to PKP3) are essential for the structure and function of desmosomal junctions as demonstrated by the severe skin defects observed as a result of loss-of-function mutations in mice and men. PKPs play additional roles in cell signaling processes, such as those controlling the cellular stress response and cell proliferation. A key post-translational process controlling PKP function is phosphorylation. We have discovered that reactive oxygen species (ROS) trigger the c-Src kinase-mediated tyrosine (Tyr)-195 phosphorylation of PKP3. This modification is associated with a change in the subcellular distribution of the protein. Specifically, PKP3 bearing phospho-Tyr-195 is released from the desmosomes, suggesting that phospho-Tyr-195 is relevant for the control of desmosome disassembly and function, at least in cells exposed to ROS. Tyr-195 phosphorylation is transient under normal physiological conditions and seems to be strictly regulated, as the activation of particular growth factor receptors results in a modification at this site only when tyrosine phosphatases are inactivated by pervanadate. We have identified Tyr-195 of PKP3 as a phosphorylation target of epidermal growth factor receptor signaling. Interestingly, this PKP3 phosphorylation also occurs in certain poorly differentiated adenocarcinomas of the prostate, suggesting a possible role in tumor progression. Our study thus identifies a new mechanism controlling PKP3 and hence desmosome function in epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012:936486

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150

    Article  PubMed  CAS  Google Scholar 

  • Auclerc G, Antoine EC, Cajfinger F, Brunet-Pommeyrol A, Agazia C, Khayat D (2000) Management of advanced prostate cancer. Oncologist 5:36–44

    Article  PubMed  CAS  Google Scholar 

  • Bae YS, Kang SW, Seo MS, Baines IC, Tekle E, Chock PB, Rhee SG (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  PubMed  CAS  Google Scholar 

  • Bass-Zubek AE, Hobbs RP, Amargo EV, Garcia NJ, Hsieh SN, Chen X, Wahl JK III, Denning MF, Green KJ (2008) Plakophilin 2: a critical scaffold for PKC alpha that regulates intercellular junction assembly. J Cell Biol 181:605–613

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bass-Zubek AE, Godsel LM, Delmar M, Green KJ (2009) Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr Opin Cell Biol 21:708–716

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Basuroy S, Dunagan M, Sheth P, Seth A, Rao RK (2010) Hydrogen peroxide activates focal adhesion kinase and c-Src by a phosphatidylinositol 3 kinase-dependent mechanism and promotes cell migration in Caco-2 cell monolayers. Am J Physiol Gastrointest Liver Physiol 299:G186–G195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  PubMed  CAS  Google Scholar 

  • Breuninger S, Reidenbach S, Sauer CG, Strobel P, Pfitzenmaier J, Trojan L, Hofmann I (2010) Desmosomal plakophilins in the prostate and prostatic adenocarcinomas: implications for diagnosis and tumor progression. Am J Pathol 176:2509–2519

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brunton VG, MacPherson IR, Frame MC (2004) Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. Biochim Biophys Acta 1692:121–144

    Article  PubMed  CAS  Google Scholar 

  • Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Paolo DG (1998) Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol 141:1449–1465

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Catarzi S, Biagioni C, Giannoni E, Favilli F, Marcucci T, Iantomasi T, Vincenzini MT (2005) Redox regulation of platelet-derived-growth-factor-receptor: role of NADPH-oxidase and c-Src tyrosine kinase. Biochim Biophys Acta 1745:166–175

    Article  PubMed  CAS  Google Scholar 

  • Chang YM, Kung HJ, Evans CP (2007) Nonreceptor tyrosine kinases in prostate cancer. Neoplasia 9:90–100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chen X, Bonne S, Hatzfeld M, Roy F van, Green KJ (2002) Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta-catenin signaling. J Biol Chem 277:10512–10522

  • Cirillo N, Alshwaimi E, McCullough M, Prime SS (2014) Pemphigus vulgaris autoimmune globulin induces Src-dependent tyrosine-phosphorylation of plakophilin 3 and its detachment from desmoglein 3. Autoimmunity 47:134–140

    Article  PubMed  CAS  Google Scholar 

  • Demirag GG, Sullu Y, Yucel I (2012) Expression of Plakophilins (PKP1, PKP2, and PKP3) in breast cancers. Med Oncol 29:1518–1522

    Article  PubMed  CAS  Google Scholar 

  • Emara MM, Fujimura K, Sciaranghella D, Ivanova V, Ivanov P, Anderson P (2012) Hydrogen peroxide induces stress granule formation independent of eIF2alpha phosphorylation. Biochem Biophys Res Commun 423:763–769

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fuchs M, Muller T, Lerch MM, Ullrich A (1996) Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J Biol Chem 271:16712–16719

    Article  PubMed  CAS  Google Scholar 

  • Furukawa C, Daigo Y, Ishikawa N, Kato T, Ito T, Tsuchiya E, Sone S, Nakamura Y (2005) Plakophilin 3 oncogene as prognostic marker and therapeutic target for lung cancer. Cancer Res 65:7102–7110

    Article  PubMed  CAS  Google Scholar 

  • Gao N, Shen L, Zhang Z, Leonard SS, He H, Zhang XG, Shi X, Jiang BH (2004) Arsenite induces HIF-1alpha and VEGF through PI3K, Akt and reactive oxygen species in DU145 human prostate carcinoma cells. Mol Cell Biochem 255:33–45

    Article  PubMed  CAS  Google Scholar 

  • Garrod DR, Fisher C, Smith A, Nie Z (2008) Pervanadate stabilizes desmosomes. Cell Adhes Migr 2:161–166

    Article  Google Scholar 

  • Gaudry CA, Palka HL, Dusek RL, Huen AC, Khandekar MJ, Hudson LG, Green KJ (2001) Tyrosine-phosphorylated plakoglobin is associated with desmogleins but not desmoplakin after epidermal growth factor receptor activation. J Biol Chem 276:24871–24880

    Article  PubMed  CAS  Google Scholar 

  • Godsel LM, Dubash AD, Bass-Zubek AE, Amargo EV, Klessner JL, Hobbs RP, Chen X, Green KJ (2010) Plakophilin 2 couples actomyosin remodeling to desmosomal plaque assembly via RhoA. Mol Biol Cell 21:2844–2859

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gosavi P, Kundu ST, Khapare N, Sehgal L, Karkhanis MS, Dalal SN (2011) E-cadherin and plakoglobin recruit plakophilin3 to the cell border to initiate desmosome assembly. Cell Mol Life Sci 68:1439–1454

    Article  PubMed  CAS  Google Scholar 

  • Grossmann KS, Grund C, Huelsken J, Behrend M, Erdmann B, Franke WW, Birchmeier W (2004) Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J Cell Biol 167:149–160

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hofmann I, Casella M, Schnölzer M, Schlechter T, Spring H, Franke WW (2006) Identification of the junctional plaque protein plakophilin 3 in cytoplasmic particles containing RNA-binding proteins and the recruitment of plakophilins 1 and 3 to stress granules. Mol Biol Cell 17:1388–1398

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272:843–851

    Article  PubMed  CAS  Google Scholar 

  • Khandrika L, Kumar B, Koul S, Maroni P, Koul HK (2009) Oxidative stress in prostate cancer. Cancer Lett 282:125–136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kitchin KT, Ahmad S (2003) Oxidative stress as a possible mode of action for arsenic carcinogenesis. Toxicol Lett 137:3–13

    Article  PubMed  CAS  Google Scholar 

  • Klessner JL, Desai BV, Amargo EV, Getsios S, Green KJ (2009) EGFR and ADAMs cooperate to regulate shedding and endocytic trafficking of the desmosomal cadherin desmoglein 2. Mol Biol Cell 20:328–337

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15:5314–5325

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kundu ST, Gosavi P, Khapare N, Patel R, Hosing AS, Maru GB, Ingle A, Decaprio JA, Dalal SN (2008) Plakophilin3 downregulation leads to a decrease in cell adhesion and promotes metastasis. Int J Cancer 123:2303–2314

    Article  PubMed  CAS  Google Scholar 

  • Kuppers V, Vockel M, Nottebaum AF, Vestweber D (2014) Phosphatases and kinases as regulators of the endothelial barrier function. Cell Tissue Res 355:577–586

    Article  PubMed  CAS  Google Scholar 

  • Lai-Cheong JE, Arita K, McGrath JA (2007) Genetic diseases of junctions. J Invest Dermatol 127:2713–2725

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li D, Ambrogio L, Shimamura T, Kubo S, Takahashi M, Chirieac LR, Padera RF, Shapiro GI, Baum A, Himmelsbach F, Rettig WJ, Meyerson M, Solca F, Greulich H, Wong KK (2008) BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27:4702–4711

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Q, Zhang Y, Marden JJ, Banfi B, Engelhardt JF (2008) Endosomal NADPH oxidase regulates c-Src activation following hypoxia/reoxygenation injury. Biochem J 411:531–541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lorch JH, Klessner J, Park JK, Getsios S, Wu YL, Stack MS, Green KJ (2004) Epidermal growth factor receptor inhibition promotes desmosome assembly and strengthens intercellular adhesion in squamous cell carcinoma cells. J Biol Chem 279:37191–37200

    Article  PubMed  CAS  Google Scholar 

  • Maejima Y, Ueba H, Kuroki M, Yasu T, Hashimoto S, Nabata A, Kobayashi N, Ikeda N, Saito M, Kawakami M (2003) Src family kinases and nitric oxide production are required for hepatocyte growth factor-stimulated endothelial cell growth. Atherosclerosis 167:89–95

    Article  PubMed  CAS  Google Scholar 

  • Makarova G, Bette M, Schmidt A, Jacob R, Cai C, Rodepeter F, Betz T, Sitterberg J, Bakowsky U, Moll R, Neff A, Sesterhenn A, Teymoortash A, Ocker M, Werner JA, Mandic R (2013) Epidermal growth factor-induced modulation of cytokeratin expression levels influences the morphological phenotype of head and neck squamous cell carcinoma cells. Cell Tissue Res 351:59–72

    Article  PubMed  CAS  Google Scholar 

  • Mariner DJ, Anastasiadis P, Keilhack H, Bohmer FD, Wang J, Reynolds AB (2001) Identification of Src phosphorylation sites in the catenin p120ctn. J Biol Chem 276:28006–28013

    Article  PubMed  CAS  Google Scholar 

  • Matsuyoshi N, Hamaguchi M, Taniguchi S, Nagafuchi A, Tsukita S, Takeichi M (1992) Cadherin-mediated cell-cell adhesion is perturbed by v-src tyrosine phosphorylation in metastatic fibroblasts. J Cell Biol 118:703–714

    Article  PubMed  CAS  Google Scholar 

  • McLachlan RW, Yap AS (2011) Protein tyrosine phosphatase activity is necessary for E-cadherin-activated Src signaling. Cytoskeleton (Hoboken) 68:32–43

    Article  CAS  Google Scholar 

  • Mehraein-Ghomi F, Lee E, Church DR, Thompson TA, Basu HS, Wilding G (2008) JunD mediates androgen-induced oxidative stress in androgen dependent LNCaP human prostate cancer cells. Prostate 68:924–934

    Article  PubMed  CAS  Google Scholar 

  • Mertens C, Hofmann I, Wang Z, Teichmann M, Sepehri CS, Schnolzer M, Franke WW (2001) Nuclear particles containing RNA polymerase III complexes associated with the junctional plaque protein plakophilin 2. Proc Natl Acad Sci U S A 98:7795–7800

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Miravet S, Piedra J, Castano J, Raurell I, Franci C, Dunach M, Garcia HA de (2003) Tyrosine phosphorylation of plakoglobin causes contrary effects on its association with desmosomes and adherens junction components and modulates beta-catenin-mediated transcription. Mol Cell Biol 23:7391–7402

  • Müller J, Ritt DA, Copeland TD, Morrison DK (2003) Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate. EMBO J 22:4431–4442

    Article  PubMed Central  PubMed  Google Scholar 

  • Munoz WA, Kloc M, Cho K, Lee M, Hofmann I, Sater A, Vleminckx K, McCrea PD (2012) Plakophilin-3 is required for late embryonic amphibian development, exhibiting roles in ectodermal and neural tissues. PLoS One 7:e34342

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Neuber S, Mühmer M, Wratten D, Koch PJ, Moll R, Schmidt A (2010) The desmosomal plaque proteins of the plakophilin family. Dermatol Res Pract 2010:101452

    PubMed Central  PubMed  Google Scholar 

  • New L, Li Y, Ge B, Zhong H, Mansbridge J, Liu K, Han J (2001) SB203580 promotes EGF-stimulated early morphological differentiation in PC12 cell through activating ERK pathway. J Cell Biochem 83:585–596

    Article  PubMed  CAS  Google Scholar 

  • Parsons SJ, Parsons JT (2004) Src family kinases, key regulators of signal transduction. Oncogene 23:7906–7909

    Article  PubMed  CAS  Google Scholar 

  • Pieters T, Roy F van, Hengel J van (2012) Functions of p120ctn isoforms in cell-cell adhesion and intracellular signaling. Front Biosci 17:1669–1694

  • Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312:1882–1883

    Article  PubMed  Google Scholar 

  • Roberts BJ, Reddy R, Wahl JK III (2013) Stratifin (14-3-3 sigma) limits plakophilin-3 exchange with the desmosomal plaque. PLoS One 8:e77012

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Roudabush FL, Pierce KL, Maudsley S, Khan KD, Luttrell LM (2000) Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK1/2 activation in COS-7 cells. J Biol Chem 275:22583–22589

    Article  PubMed  CAS  Google Scholar 

  • Sallee JL, Wittchen ES, Burridge K (2006) Regulation of cell adhesion by protein-tyrosine phosphatases. II. Cell-cell adhesion. J Biol Chem 281:16189–16192

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Langbein L, Prätzel S, Rode M, Rackwitz HR, Franke WW (1999) Plakophilin 3—a novel cell-type-specific desmosomal plaque protein. Differentiation 64:291–306

    PubMed  CAS  Google Scholar 

  • Schwarz J, Ayim A, Schmidt A, Jager S, Koch S, Baumann R, Dunne AA, Moll R (2006) Differential expression of desmosomal plakophilins in various types of carcinomas: correlation with cell type and differentiation. Hum Pathol 37:613–622

    Article  PubMed  CAS  Google Scholar 

  • Shibamoto S, Hayakawa M, Takeuchi K, Hori T, Oku N, Miyazawa K, Kitamura N, Takeichi M, Ito F (1994) Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes Commun 1:295–305

    Article  PubMed  CAS  Google Scholar 

  • Sklyarova T, Bonne S, D’Hooge P, Denecker G, Goossens S, De RR, Borgonie G, Bosl M, Van RF, Hengel J van (2008) Plakophilin-3-deficient mice develop hair coat abnormalities and are prone to cutaneous inflammation. J Invest Dermatol 128:1375–1385

  • Sobolik-Delmaire T, Reddy R, Pashaj A, Roberts BJ, Wahl JK III (2010) Plakophilin-1 localizes to the nucleus and interacts with single-stranded DNA. J Invest Dermatol 130:2638–2646

    Article  PubMed  CAS  Google Scholar 

  • Tatarov O, Mitchell TJ, Seywright M, Leung HY, Brunton VG, Edwards J (2009) SRC family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin Cancer Res 15:3540–3549

    Article  PubMed  CAS  Google Scholar 

  • Ukropec JA, Hollinger MK, Salva SM, Woolkalis MJ (2000) SHP2 association with VE-cadherin complexes in human endothelial cells is regulated by thrombin. J Biol Chem 275:5983–5986

    Article  PubMed  CAS  Google Scholar 

  • Waschke J (2008) The desmosome and pemphigus. Histochem Cell Biol 130:21–54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wells J, Dai X (2010) Using siRNA knockdown in HaCaT cells to study transcriptional control of epidermal proliferation potential. Methods Mol Biol 585:107–125. doi:10.1007/978-1-60761-380-0_9.:107-125

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DL, Iida M, Dunn EF (2009) The role of Src in solid tumors. Oncologist 14:667–678

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wolf A, Hatzfeld M (2010) A role of plakophilins in the regulation of translation. Cell Cycle 9:2973–2978

    PubMed  CAS  Google Scholar 

  • Wolf A, Krause-Gruszczynska M, Birkenmeier O, Ostareck-Lederer A, Huttelmaier S, Hatzfeld M (2010) Plakophilin 1 stimulates translation by promoting eIF4A1 activity. J Cell Biol 188:463–471

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wolf A, Rietscher K, Glass M, Huttelmaier S, Schutkowski M, Ihling C, Sinz A, Wingenfeld A, Mun A, Hatzfeld M (2013) Insulin signaling via Akt2 switches plakophilin 1 function from stabilizing cell adhesion to promoting cell proliferation. J Cell Sci 126:1832–1844

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wolf-Yadlin A, Ross PL, Pappin DJ, Rush J, Lauffenburger DA, White FM (2005) Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol Cell Proteomics 4:1240–1250

    Article  PubMed  CAS  Google Scholar 

  • Zhuang S, Schnellmann RG (2004) H2O2-induced transactivation of EGF receptor requires Src and mediates ERK1/2, but not Akt, activation in renal cells. Am J Physiol Renal Physiol 286:F858–F865

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansgar Schmidt.

Additional information

This study was supported by a grant from the Deutsche Krebshilfe e.V. (German Cancer Aid, no. 108 513) to A.S. and R.M.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Figure 1

Isoelectric variants of PKP3 as detected by 2D gel electrophoresis in extracts from HaCaT cells. a Proteins from HaCaT cells were subjected to two-dimensional gel electrophoresis by using isoelectric focusing (IEF) in the first dimension (from pH 7 to pH 10) and SDS-PAGE in the second dimension. Western blotting with PKP3-specific antibodies (P3-3) revealed several isoelectric variants of PKP3. b To access general Tyr-phosphorylation of PKP3, immunoprecipitated PKP3 (IP: P3-3) from either untreated (−PV) or pervanadate (+PV)-treated HaCaT cells was analyzed by using monoclonal antibodies against PKP3 (P3) or phospho-Tyr-specific antibody p-Y20 (pY). Only weak or frequently no reaction was noticed for phospho-Tyr antibody when proteins were isolated from cells not exposed to phosphatase inhibitors. In the presence of tyrosine phosphatase inhibitor pervanadate, Tyr-phosphorylated PKP3 is clearly detectable. In (a), abscissa pH, ordinate apparent molecular weight in kDa (GIF 13 kb)

High Resolution Image (TIFF 1016 kb)

Suppl. Figure 2

Double-immunofluorescence microscopy of HaCaT cells treated with low concentrations of hydrogen peroxide. HaCaT cells were incubated with hydrogen peroxide (1 mM H2O2) for 1 h followed by staining with antibodies against G3BP1 (a, a’’, G3BP) or PKP3 (a’, a’’, PKP3). HaCaT cells do not form large stress granules as seen in previous experiments with sodium arsenite, but a change of G3BP1 distribution occurs from fine and diffusely distributed granules to somewhat larger aggregates. PKP3 localizes mainly to the desmosomes and the cytoplasm. Neither activation of c-Src kinase (b, b’’, p-Src) nor phosphorylation of Tyr-195 (b’, b’’, p-Y195) can be detected under these conditions. Inset in a Magnification of a typical detail showing small aggregates of G3BP1 in the cytoplasm probably reflecting non-canonical stress granules that form under these conditions. Bars 10 μm (GIF 182 kb)

High Resolution Image (TIFF 7397 kb)

Suppl. Figure 3

Double-immunofluorescence microscopy of sodium-arsenite-treated HaCaT cells. HaCaT cells were treated with 1 mM sodium arsenite for the indicated times (0, 10, 20, and 30 min Ars) and then analyzed with antibodies against G3BP1 (a–d, G3BP) and PKP3 (a’–d’, PKP3) by immunofluorescence microscopy. Without sodium arsenite treatment, PKP3 localizes to the desmosomes and also diffusely in the cytoplasm (a’). G3BP1 is diffusely distributed throughout the cytoplasm (a). After 10 min of sodium arsenite incubation, cells started to develop stress granules (b, arrow), a process that eventually becomes detectable in all cells (c, d). PKP3 also appears in stress granules (arrows in insets in c–c’’). Inset in a Magnification of a typical detail showing finely distributed cytoplasmic staining of G3BP1 of untreated cells with no obvious formation of stress granules. Bars: 10 μm (GIF 523 kb)

High Resolution Image (TIFF 22846 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neuber, S., Jäger, S., Meyer, M. et al. c-Src mediated tyrosine phosphorylation of plakophilin 3 as a new mechanism to control desmosome composition in cells exposed to oxidative stress. Cell Tissue Res 359, 799–816 (2015). https://doi.org/10.1007/s00441-014-2063-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-2063-x

Keywords

Navigation