Skip to main content
Log in

Regional changes in elastic fiber organization and transforming growth factor β signaling in aortas from a mouse model of marfan syndrome

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

In Marfan Syndrome (MFS), development of thoracic aortic aneurysms (TAAs) is characterized by degeneration of the medial layer of the aorta, including fragmentation and loss of elastic fibers, phenotypic changes in the smooth muscle cells, and an increase in the active form of transforming growth factor-β (TGFβ), which is thought to play a major role in development and progression of the aneurysm. We hypothesized that regional difference in elastic fiber fragmentation contributes to TGFβ activation and hence the localization of aneurysm formation. The fibrillin-1-deficient mgR/mgR mouse model of MFS was used to investigate regional changes in elastin fiber fragmentation, TGFβ activation and changes in gene expression as compared to wild-type littermates. Knockdown of Smad 2 and Smad 3 with shRNA was used to determine the role of the specific transcription factors in gene regulation in aortic smooth muscle cells. We show increased elastin fiber fragmentation in the regions associated with aneurysm formation and altered TGFβ signaling in these regions. Differential effects of Smad 2 and Smad 3 were observed in cultured smooth muscle cells by shRNA-mediated knockdown of expression of these transcription factors. Differential signaling through Smad 2 and Smad 3 in regions of active vascular remodeling likely contribute to aneurysm formation in the mgR/mgR model of MFS. Increased elastin fiber fragmentation in these regions is associated with these changes as compared to other regions of the thoracic aorta and may contribute to the changes in TGFβ signaling in these regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agirbasli M (2005) Pivotal role of plasminogen-activator inhibitor 1 in vascular disease. Int J Clin Pract 59:102–106

    Article  CAS  PubMed  Google Scholar 

  • Allen RT, Krueger KD, Dhume A, Agrawal DK (2005) Sustained Akt/PKB activation and transient attenuation of c-jun N-Terminal kinase in the inhibition of apoptosis by IGF-1 in vascular smooth muscle cells. Apoptosis 10:525–535

    Article  CAS  PubMed  Google Scholar 

  • Bhoday J, de Silva S, Xu Q (2006) The molecular mechanisms of vascular restenosis: Which genes are crucial? Curr Vasc Pharmacol 4:269–275

    Article  CAS  PubMed  Google Scholar 

  • Border WA, Noble NA (1994) Transforming Growth Factor β in Tissue Fibrosis. N Engl J Med 331:1286–1292

    Article  CAS  PubMed  Google Scholar 

  • Brown KA, Pietenpol JA, Moses HL (2007) A tale of two proteins: Differential roles and regulation of Smad2 and Smad3 in TGF-β signaling. J Cell Biochem 101:9–33

    Article  CAS  PubMed  Google Scholar 

  • Choke E, Cockerill G, Wilson WRW, Sayed S, Dawson J, Loftus I, Thompson MM (2005) A Review of Biological Factors Implicated in Abdominal Aortic Aneurysm Rupture. Eur J Vasc Endovasc Surg 30:227–244

    Article  CAS  PubMed  Google Scholar 

  • Coady MA, Rizzo JA, Goldstein LJ, Elefteriades JA (1999) Natural history, pathogenesis, and etiology of thoracic aortic aneurysms and dissections. Cardiol Clin 17:615–635

    Article  CAS  PubMed  Google Scholar 

  • Cook JR, Nistala H, Ramirez F (2010) Drug-based therapies for vascular disease in Marfan syndrome: from mouse models to human patients. Mt Sinai J Med 77:366–373

    Article  PubMed Central  PubMed  Google Scholar 

  • Degryse B, Neels JG, Czekay R-P, Aertgeerts K, Y-i K, Loskutoff DJ (2004) The Low Density Lipoprotein Receptor-related Protein Is a Motogenic Receptor for Plasminogen Activator Inhibitor-1. J Biol Chem 279:22595–22604

    Article  CAS  PubMed  Google Scholar 

  • Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGFβ‐inducible elements in the promoter of human plasminogen activator inhibitor‐type 1 gene. EMBO J 17:3091–3100

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-[beta] family signalling. Nature 425:577–584

    Article  CAS  PubMed  Google Scholar 

  • DeYoung MB, Tom C, Dichek DA (2001) Plasminogen Activator Inhibitor Type 1 Increases Neointima Formation in Balloon-Injured Rat Carotid Arteries. Circulation 104:1972–1971

    Article  CAS  PubMed  Google Scholar 

  • Dietz HC, Loeys B, Carta L, Ramirez F (2005) Recent progress towards a molecular understanding of Marfan syndrome. Am J Med Genet C: Semin Med Genet 139C:4–9

    Article  CAS  Google Scholar 

  • Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME, Schepers D, Gillis E, Mortier G, Homfray T, Sauls K, Norris RA, Huso ND, Leahy D, Mohr DW, Caulfield MJ, Scott AF, Destrée A, Hennekam RC, Arn PH, Curry CJ, Van Laer L, McCallion AS, Loeys BL, Dietz HC (2012) Mutations in the TGF-β repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat Genet 44:1249–1254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eddy AA, Fogo AB (2006) Plasminogen Activator Inhibitor-1 in Chronic Kidney Disease: Evidence and Mechanisms of Action. J Am Soc Nephrol 17:2999–3012

    Article  CAS  PubMed  Google Scholar 

  • Fatini C, Pratesi G, Sofi F, Gensini F, Sticchi E, Lari B, Pulli R, Dorigo W, Azas L, Pratesi C, Gensini GF, Abbate R (2005) ACE DD Genotype: A Predisposing Factor for Abdominal Aortic Aneurysm. Eur J Vasc Endovasc Surg 29:227–232

    Article  CAS  PubMed  Google Scholar 

  • Flanders KC (2004) Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 85:47–64

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Francke U, Berg MA, Tynan K, Brenn T, Liu W, Aoyama T, Gasner C, Miller DC, Furthmayr H (1995) A Gly1127Ser mutation in an EGF-like domain of the fibrillin-1 gene is a risk factor for ascending aortic aneurysm and dissection. Am J Hum Genet 56:1287–1296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fratzl P (2008) Collagen: Structure and Mechanics, an Introduction. In: Fratzl P (ed) Collagen. Springer, New York, pp 1–13

  • Fukui D, Miyagawa S, Soeda J, Tanaka K, Urayama H, Kawasaki S (2003) Overexpression of transforming growth factor β1 in smooth muscle cells of human abdominal aortic aneurysm. Eur J Vasc Endovasc Surg 25:540–545

    Article  CAS  PubMed  Google Scholar 

  • Guo DC, Papke CL, Tran-Fadulu V, Regalado ES, Avidan N, Johnson RJ, Kim DH, Pannu H, Willing MC, Sparks E, Pyeritz RE, Singh MN, Dalman RL, Grotta JC, Marian AJ, Boerwinkle EA, Frazier LQ, LeMaire SA, Coselli JS, Estrera AL, Safi HJ, Veeraraghavan S, Muzny DM, Wheeler DA, Willerson JT, Yu RK, Shete SS, Scherer SE, Raman CS, Buja LM, Milewicz DM (2009) Mutations in Smooth Muscle Alpha-Actin (ACTA2) Cause Coronary Artery Disease, Stroke, and Moyamoya Disease, Along with Thoracic Aortic Disease. Am J Hum Genet 84:617–627

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Habashi JP, Judge DP, Holm TM, Cohn RD, Loeys BL, Cooper TK, Myers L, Klein EC, Liu G, Calvi C, Podowski M, Neptune ER, Halushka MK, Bedja D, Gabrielson K, Rifkin DB, Carta L, Ramirez F, Huso DL, Dietz HC (2006) Losartan, an AT1 Antagonist, Prevents Aortic Aneurysm in a Mouse Model of Marfan Syndrome. Science 312:117–121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He CM, Roach MR (1994) The composition and mechanical properties of abdominal aortic aneurysms. J Vasc Surg 20:6–13

    Article  CAS  PubMed  Google Scholar 

  • Henderson EL, Geng Y-J, Sukhova GK, Whittemore AD, Knox J, Libby P (1999) Death of Smooth Muscle Cells and Expression of Mediators of Apoptosis by T Lymphocytes in Human Abdominal Aortic Aneurysms. Circulation 99:96–104

    Article  CAS  PubMed  Google Scholar 

  • Hodis S, Zamir M (2011) Mechanical events within the arterial wall under the forces of pulsatile flow: A review. J Mech Behav Biomed Mater 4:1595–1602

    Article  CAS  PubMed  Google Scholar 

  • Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp C, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, Loeys BL, Thomas CJ, Patnaik S, Marugan JJ, Judge DP, Dietz HC (2011) Noncanonical TGFβ Signaling Contributes to Aortic Aneurysm Progression in Marfan Syndrome Mice. Science 332:358–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu JJ, Fossum TW, Miller MW, Xu H, Liu JC, Humphrey JD (2007) Biomechanics of the Porcine Basilar Artery in Hypertension. Ann Biomed Eng 35:19–29

    Article  CAS  PubMed  Google Scholar 

  • Humphrey JD (2008) Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress. Hypertension 52:195–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones JA, Spinale FG, Ikonomidis JS (2009) Transforming Growth Factor-β Signaling in Thoracic Aortic Aneurysm Development: A Paradox in Pathogenesis. J Vasc Res 46:119–137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katzke S, Booms P, Tiecke F, Palz M, Pletschacher A, Türkmen S, Neumann LM, Pregla R, Leitner C, Schramm C, Lorenz P, Hagemeier C, Fuchs J, Skovby F, Rosenberg T, Robinson PN (2002) TGGE screening of the entire FBN1 coding sequence in 126 individuals with marfan syndrome and related fibrillinopathies. Hum Mutat 20:197–208

    Article  CAS  PubMed  Google Scholar 

  • Kohler HP, Grant PJ (2000) Plasminogen-Activator Inhibitor Type 1 and Coronary Artery Disease. N Engl J Med 342:1792–1801

    Article  CAS  PubMed  Google Scholar 

  • Kurisaki A, Kose S, Yoneda Y, Heldin C-H, Moustakas A (2001) Transforming Growth Factor-β Induces Nuclear Import of Smad3 in an Importin-β1 and Ran-dependent Manner. Mol Biol Cell 12:1079–1091

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laiho M, Saksela O, Keski-Oja J (1986) Transforming growth factor β alters plasminogen activator activity in human skin fibroblasts. Exp Cell Res 164:399–407

    Article  CAS  PubMed  Google Scholar 

  • LeMaire SA, Russell L (2011) Epidemiology of thoracic aortic dissection. Nat Rev Cardiol 8:103–113

    Article  PubMed  Google Scholar 

  • Lin H-K, Bergmann S, Pandolfi PP (2004) Cytoplasmic PML function in TGF-[beta] signalling. Nature 431:205–211

    Article  CAS  PubMed  Google Scholar 

  • Macsweeney STR, Young G, Greenhalgh RM, Powell JT (1992) Mechanical properties of the aneurysmal aorta. Br J Surg 79:1281–1284

    Article  CAS  PubMed  Google Scholar 

  • Massague J (2000) How cells read TGF-[beta] signals. Nat Rev Mol Cell Biol 1:169–178

    Article  CAS  PubMed  Google Scholar 

  • Milewicz DM, Guo D-C, Tran-Fadulu V, Lafont AL, Papke CL, Inamoto S, Kwartler CS, Pannu H (2008) Genetic Basis of Thoracic Aortic Aneurysms and Dissections: Focus on Smooth Muscle Cell Contractile Dysfunction. Annu Rev Genomics Hum Genet 9:283–302

    Article  CAS  PubMed  Google Scholar 

  • Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Ji H, Heldin CH, Miyazono K, ten Dijke P (1997) TGF‐β receptor‐mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16:5353–5362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-[beta] activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33:407–411

    Article  CAS  PubMed  Google Scholar 

  • Patterson GI, Padgett RW (2000) TGFβ-related pathways: roles in Caenorhabditis elegans development. Trends Genet 16:27–33

    Article  CAS  PubMed  Google Scholar 

  • Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96:3819–3823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pierreux CE, Nicolás FJ, Hill CS (2000) Transforming Growth Factor β-Independent Shuttling of Smad4 between the Cytoplasm and Nucleus. Mol Cell Biol 20:9041–9054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pietri T, Eder O, Blanche M, Thiery JP, Dufour S (2003) The human tissue plasminogen activator-Cre mouse: a new tool for targeting specifically neural crest cells and their derivatives in vivo. Dev Biol 259:176–187

    Article  CAS  PubMed  Google Scholar 

  • Pohlers D, Brenmoehl J, Löffler I, Müller CK, Leipner C, Schultze-Mosgau S, Stallmach A, Kinne RW, Wolf G (2009) TGF-β and fibrosis in different organs — molecular pathway imprints. Biochim Biophys Acta (BBA) - Mol Basis Dis 1792:746–756

    Article  CAS  Google Scholar 

  • Poncelet A-C, De Caestecker MP, Schnaper HW (1999) The transforming growth factor-[bgr]/SMAD signaling pathway is present and functional in human mesangial cells. Kidney Int 56:1354–1365

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team. (2008). R: A language and environment for statistical computing.R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org

  • Rizzo RJ, McCarthy WJ, Dixit SN, Lilly MP, Shively VP, Flinn WR, Yao JST (1989) Collagen types and matrix protein content in human abdominal aortic aneurysms. J Vasc Surg 10:365–373

    Article  CAS  PubMed  Google Scholar 

  • Roberts AB, Sporn MB, Assoian RK, Smith JM, Roche NS, Wakefield LM, Heine UI, Liotta LA, Falanga V, Kehrl JH (1986) Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci USA 83:4167–4171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts AB, Russo A, Felici A, Flanders KC (2003) Smad3: A Key Player in Pathogenetic Mechanisms Dependent on TGF-β. Ann N Y Acad Sci 995:1–10

    Article  CAS  PubMed  Google Scholar 

  • Selvamurugan N, Kwok S, Alliston T, Reiss M, Partridge NC (2004) Transforming Growth Factor-β1 Regulation of Collagenase-3 Expression in Osteoblastic Cells by Cross-talk between the Smad and MAPK Signaling Pathways and Their Components, Smad2 and Runx2. J Biol Chem 279:19327–19334

    Article  CAS  PubMed  Google Scholar 

  • Sherwood L (2008) Human Physiology: From Cells to Systems. Cengage Learning, Brooks/Cole

  • Shi Y, Massagué J (2003) Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, O'Brien JE, Fard A, Zalewski A (1996) Transforming Growth Factor-β1 Expression and Myofibroblast Formation During Arterial Repair. Arterioscler Thromb Vasc Biol 16:1298–1305

    Article  CAS  PubMed  Google Scholar 

  • Sho E, Sho M, Nanjo H, Kawamura K, Masuda H, Dalman RL (2005) Comparison of cell-type-specific vs transmural aortic gene expression in experimental aneurysms. J Vasc Surg 41:844–852

    Article  PubMed  Google Scholar 

  • Sobel BE, Taatjes DJ, Schneider DJ (2003) Intramural Plasminogen Activator Inhibitor Type-1 and Coronary Atherosclerosis. Arterioscler Thromb Vasc Biol 23:1979–1989

    Article  CAS  PubMed  Google Scholar 

  • Stroschein SL, Wang W, Luo K (1999) Cooperative Binding of Smad Proteins to Two Adjacent DNA Elements in the Plasminogen Activator Inhibitor-1 Promoter Mediates Transforming Growth Factor β-induced Smad-dependent Transcriptional Activation. J Biol Chem 274:9431–9441

    Article  CAS  PubMed  Google Scholar 

  • Ten Dijke P, Goumans M-J, Itoh F, Itoh S (2002) Regulation of cell proliferation by Smad proteins. J Cell Physiol 191:1–16

    Article  PubMed  Google Scholar 

  • Topouzis S, Majesky MW (1996) Smooth Muscle Lineage Diversity in the Chick Embryo: Two Types of Aortic Smooth Muscle Cell Differ in Growth and Receptor-Mediated Transcriptional Responses to Transforming Growth Factor-β. Dev Biol 178:430–445

    Article  CAS  Google Scholar 

  • Tsukada S, Westwick JK, Ikejima K, Sato N, Rippe RA (2005) SMAD and p38 MAPK Signaling Pathways Independently Regulate α1(I) Collagen Gene Expression in Unstimulated and Transforming Growth Factor-β-stimulated Hepatic Stellate Cells. J Biol Chem 280:10055–10064

    Article  CAS  PubMed  Google Scholar 

  • Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL (1998) SARA, a FYVE Domain Protein that Recruits Smad2 to the TGFβ Receptor. Cell 95:779–791

    Article  CAS  PubMed  Google Scholar 

  • van de Laar IMBH, Oldenburg RA, Pals G, Roos-Hesselink JW, de Graaf BM, Verhagen JMA, Hoedemaekers YM, Willemsen R, Severijnen L-A, Venselaar H, Vriend G, Pattynama PM, Collee M, Majoor-Krakauer D, Poldermans D, Frohn-Mulder IME, Micha D, Timmermans J, Hilhorst-Hofstee Y, Bierma-Zeinstra SM, Willems PJ, Kros JM, Oei EHG, Oostra BA, Wessels MW, Bertoli-Avella AM (2011) Mutations in SMAD3 cause a syndromic form of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet 43:121–126

    Article  PubMed  Google Scholar 

  • Vaughan DE (2002) PAI-1 and Cellular Migration: Dabbling in Paradox. Arterioscler Thromb Vasc Biol 22:1522–1523

    Article  PubMed  Google Scholar 

  • Vaughan MB, Howard EW, Tomasek JJ (2000) Transforming Growth Factor-β1 Promotes the Morphological and Functional Differentiation of the Myofibroblast. Exp Cell Res 257:180–189

    Article  CAS  PubMed  Google Scholar 

  • Willis BC, Borok Z (2007) TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293:L525–L534

    Article  CAS  PubMed  Google Scholar 

  • Wipff P-J, Rifkin DB, Meister J-J, Hinz B (2007) Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J Cell Biol 179:1311–1323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao Z, Liu X, Lodish HF (2000) Importin ß mediates nuclear translocation of Smad 3. J Biol Chem 275:23425–23428

  • Xu L, Kang Y, Çöl S, Massagué J (2002) Smad2 Nucleocytoplasmic Shuttling by Nucleoporins CAN/Nup214 and Nup153 Feeds TGFβ Signaling Complexes in the Cytoplasm and Nucleus. Mol Cell 10:271–282

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Erin Ashmore for excellent advice and assistance with all aspects of the laboratory, Christina Thiel for technical help with experiments, Dr. Jay Humphrey for critical reading of the manuscript and suggestions throughout the study and Dr. Jerome Trzeciakowski for suggestions regarding statistical analysis. Dr. Metz is now associated with Texas AgriLife Genomics and Bioinformatics Services, Bourlaug Center College Station, TX.

Grants

This research was supported by NIH grant R21 EB004106 (EW) and HL-092380 (EW).

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howell, D.W., Popovic, N., Metz, R.P. et al. Regional changes in elastic fiber organization and transforming growth factor β signaling in aortas from a mouse model of marfan syndrome. Cell Tissue Res 358, 807–819 (2014). https://doi.org/10.1007/s00441-014-1993-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1993-7

Keywords

Navigation