Skip to main content

Advertisement

Log in

Involvement of RhoA/ROCK in insulin secretion of pancreatic β-cells in 3D culture

  • Regular article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cell-cell contacts and interactions between pancreatic β-cells and/or other cell populations within islets are essential for cell survival, insulin secretion, and functional synchronization. Three-dimensional (3D) culture systems supply the ideal microenvironment for islet-like cluster formation and functional maintenance. However, the underlying mechanisms remain unclear. In this study, mouse insulinoma 6 (MIN6) cells were cultured in a rotating 3D culture system to form islet-like aggregates. Glucose-stimulated insulin secretion (GSIS) and the RhoA/ROCK pathway were investigated. In the 3D-cultured MIN6 cells, more endocrine-specific genes were up-regulated, and GSIS was increased to a greater extent than in cells grown in monolayers. RhoA/ROCK inactivation led to F-actin remodeling in the MIN6 cell aggregates and greater insulin exocytosis. The gap junction protein, connexin 36 (Cx36), was up-regulated in MIN6 cell aggregates and RhoA/ROCK-inactivated monolayer cells. GSIS dramatically decreased when Cx36 was knocked down by short interfering RNA and could not be reversed by RhoA/ROCK inactivation. Thus, the RhoA/ROCK signaling pathway is involved in insulin release through the up-regulation of Cx36 expression in 3D-cultured MIN6 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahren B, Filipsson K (2000) The effects of PACAP on insulin secretion and glucose disposal are altered by adrenalectomy in mice. Ann N Y Acad Sci 921:251–258

    Article  PubMed  CAS  Google Scholar 

  • Anderson SC, Stone C, Tkach L, SundarRaj N (2002) Rho and Rho-kinase (ROCK) signaling in adherens and gap junction assembly in corneal epithelium. Invest Ophthalmol Vis Sci 43:978–986

    PubMed  Google Scholar 

  • Bell GI, Polonsky KS (2001) Diabetes mellitus and genetically programmed defects in beta-cell function. Nature 414:788–791

    Article  PubMed  CAS  Google Scholar 

  • Benninger RK, Head WS, Zhang M, Satin LS, Piston DW (2011) Gap junctions and other mechanisms of cell-cell communication regulate basal insulin secretion in the pancreatic islet. J Physiol (Lond) 589:5453–5466

    Article  CAS  Google Scholar 

  • Bhandari DR, Seo KW, Sun B, Seo MS, Kim HS, Seo YJ, Marcin J, Forraz N, Roy HL, Larry D, Colin M, Kang KS (2011) The simplest method for in vitro beta-cell production from human adult stem cells. Differentiation 82:144–152

    Article  PubMed  CAS  Google Scholar 

  • Bosco D, Haefliger JA, Meda P (2011) Connexins: key mediators of endocrine function. Physiol Rev 91:1393–1445

    Article  PubMed  CAS  Google Scholar 

  • Carvalho CP, Oliveira RB, Britan A, Santos-Silva JC, Boschero AC, Meda P, Collares-Buzato CB (2012) Impaired beta-cell-beta-cell coupling mediated by Cx36 gap junctions in prediabetic mice. Am J Physiol Endocrinol Metab 303:E144–E151

    Article  PubMed  CAS  Google Scholar 

  • Furukawa N, Ongusaha P, Jahng WJ, Araki K, Choi CS, Kim HJ, Lee YH, Kaibuchi K, Kahn BB, Masuzaki H, Kim JK, Lee SW, Kim YB (2005) Role of Rho-kinase in regulation of insulin action and glucose homeostasis. Cell Metab 2:119–129

    Article  PubMed  CAS  Google Scholar 

  • Grapin-Botton A, Melton DA (2000) Endoderm development: from patterning to organogenesis. Trends Genet 16:124–130

    Article  PubMed  CAS  Google Scholar 

  • Guo-Parke H, McCluskey JT, Kelly C, Hamid M, McClenaghan NH, Flatt PR (2012) Configuration of electrofusion-derived human insulin-secreting cell line as pseudoislets enhances functionality and therapeutic utility. J Endocrinol 214:257–265

    Article  PubMed  Google Scholar 

  • Halban PA, Powers SL, George KL, Bonner-Weir S (1987) Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes 36:783–790

    Article  PubMed  CAS  Google Scholar 

  • Hammar E, Tomas A, Bosco D, Halban PA (2009) Role of the Rho-ROCK (Rho-associated kinase) signaling pathway in the regulation of pancreatic beta-cell function. Endocrinology 150:2072–2079

    Article  PubMed  CAS  Google Scholar 

  • Hauge-Evans AC, Squires PE, Persaud SJ, Jones PM (1999) Pancreatic beta-cell-to-beta-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets. Diabetes 48:1402–1408

    Article  PubMed  CAS  Google Scholar 

  • Head WS, Orseth ML, Nunemaker CS, Satin LS, Piston DW, Benninger RK (2012) Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61:1700–1707

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760

    Article  PubMed  CAS  Google Scholar 

  • Kowluru A (2010) Small G proteins in islet beta-cell function. Endocr Rev 31:52–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li J, Luo R, Kowluru A, Li G (2004) Novel regulation by Rac1 of glucose- and forskolin-induced insulin secretion in INS-1 beta-cells. Am J Physiol Endocrinol Metab 286:E818–E827

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Lin J, Roy K (2006) Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials 27:5978–5989

    Article  PubMed  CAS  Google Scholar 

  • Luther MJ, Hauge-Evans A, Souza KL, Jorns A, Lenzen S, Persaud SJ, Jones PM (2006) MIN6 beta-cell-beta-cell interactions influence insulin secretory responses to nutrients and non-nutrients. Biochem Biophys Res Commun 343:99–104

    Article  PubMed  CAS  Google Scholar 

  • Meda P (1996) Role of intercellular communication via gap junctions in insulin secretion. Ann Endocrinol (Paris) 57:481–483

    CAS  Google Scholar 

  • Meda P, Bosco D, Chanson M, Giordano E, Vallar L, Wollheim C, Orci L (1990) Rapid and reversible secretion changes during uncoupling of rat insulin-producing cells. J Clin Invest 86:759–768

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Melloul D, Marshak S, Cerasi E (2002) Regulation of insulin gene transcription. Diabetologia 45:309–326

    Article  PubMed  CAS  Google Scholar 

  • Michon L, Nlend NR, Bavamian S, Bischoff L, Boucard N, Caille D, Cancela J, Charollais A, Charpantier E, Klee P, Peyrou M, Populaire C, Zulianello L, Meda P (2005) Involvement of gap junctional communication in secretion. Biochim Biophys Acta 1719:82–101

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Kaneto H, Miyatsuka T, Matsuoka TA, Matsuhisa M, Node K, Hori M, Yamasaki Y (2006) Marked increase of insulin gene transcription by suppression of the Rho/Rho-kinase pathway. Biochem Biophys Res Commun 350:68–73

    Article  PubMed  CAS  Google Scholar 

  • Nevins AK, Thurmond DC (2003) Glucose regulates the cortical actin network through modulation of Cdc42 cycling to stimulate insulin secretion. Am J Physiol Cell Physiol 285:C698–C710

    Article  PubMed  CAS  Google Scholar 

  • Nevins AK, Thurmond DC (2005) A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J Biol Chem 280:1944–1952

    Article  PubMed  CAS  Google Scholar 

  • Pampaloni F, Reynaud EG, Stelzer EH (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8:839–845

    Article  PubMed  CAS  Google Scholar 

  • Pelto J, Bjorninen M, Palli A, Talvitie E, Hyttinen JA, Mannerstrom B, Suuronen SR, Kellomaki M, Miettinen S, Haimi S (2013) Novel polypyrrole coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng Part A 19:882–892

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Racchetti G, D’Alessandro R, Meldolesi J (2012) Astrocyte stellation, a process dependent on Rac1 is sustained by the regulated exocytosis of enlargeosomes. Glia 60:465–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravier MA, Guldenagel M, Charollais A, Gjinovci A, Caille D, Sohl G, Wollheim CB, Willecke K, Henquin JC, Meda P (2005) Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54:1798–1807

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529

    Article  PubMed  CAS  Google Scholar 

  • Scemes E, Spray DC, Meda P (2009) Connexins, pannexins, innexins: novel roles of “hemi-channels”. Pflugers Arch 457:1207–1226

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Song P, Zhang M, Wang S, Xu J, Choi HC, Zou MH (2009) Thromboxane A2 receptor activates a Rho-associated kinase/LKB1/PTEN pathway to attenuate endothelium insulin signaling. J Biol Chem 284:17120–17128

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Speier S, Gjinovci A, Charollais A, Meda P, Rupnik M (2007) Cx36-mediated coupling reduces beta-cell heterogeneity, confines the stimulating glucose concentration range, and affects insulin release kinetics. Diabetes 56:1078–1086

    Article  PubMed  CAS  Google Scholar 

  • Thurmond DC, Gonelle-Gispert C, Furukawa M, Halban PA, Pessin JE (2003) Glucose-stimulated insulin secretion is coupled to the interaction of actin with the t-SNARE (target membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein) complex. Mol Endocrinol 17:732–742

    Article  PubMed  CAS  Google Scholar 

  • Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH (2013) Concise review: the evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31:1-7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wang X, Ye K (2009) Three-dimensional differentiation of embryonic stem cells into islet-like insulin-producing clusters. Tissue Eng Part A 15:1941–1952

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Thurmond DC (2009) Mechanisms of biphasic insulin-granule exocytosis—roles of the cytoskeleton, small GTPases and SNARE proteins. J Cell Sci 122:893–903

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yao H, Jia Y, Zhou J, Wang J, Li Y, Wang Y, Yue W, Pei X (2009) RhoA promotes differentiation of WB-F344 cells into the biliary lineage. Differentiation 77:154–161

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yali Li, Yunfang Wang or Xuetao Pei.

Additional information

Xiaofang Liu, Fang Yan, and Hailei Yao contributed equally to this work

This work was supported by the National High Technology Research and Development Program of China (nos. 2013AA020109 to P.X., 2012AA020501 to W.Y.) the National Nature Science Foundation of China (nos. 81170388 and 31370990 to W.Y.).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yan, F., Yao, H. et al. Involvement of RhoA/ROCK in insulin secretion of pancreatic β-cells in 3D culture. Cell Tissue Res 358, 359–369 (2014). https://doi.org/10.1007/s00441-014-1961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1961-2

Keywords

Navigation