Skip to main content

Advertisement

Log in

Adult vascular smooth muscle cells in culture express neural stem cell markers typical of resident multipotent vascular stem cells

  • Regular article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Differentiation of resident multipotent vascular stem cells (MVSCs) or de-differentiation of vascular smooth muscle cells (vSMCs) might be responsible for the SMC phenotype that plays a major role in vascular diseases such as arteriosclerosis and restenosis. We examined vSMCs from three different species (rat, murine and bovine) to establish whether they exhibit neural stem cell characteristics typical of MVSCs. We determined their SMC differentiation, neural stem cell marker expression and multipotency following induction in vitro by using immunocytochemistry, confocal microscopy, fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction. MVSCs isolated from rat aortic explants, enzymatically dispersed rat SMCs and rat bone-marrow-derived mesenchymal stem cells served as controls. Murine carotid artery lysates and primary rat aortic vSMCs were both myosin-heavy-chain-positive but weakly expressed the neural crest stem cell marker, Sox10. Each vSMC line examined expressed SMC differentiation markers (smooth muscle α–actin, myosin heavy chain and calponin), neural crest stem cell markers (Sox10+, Sox17+) and a glia marker (S100β+). Serum deprivation significantly increased calponin and myosin heavy chain expression and decreased stem cell marker expression, when compared with serum-rich conditions. vSMCs did not differentiate to adipocytes or osteoblasts following adipogenic or osteogenic inductive stimulation, respectively, or respond to transforming growth factor-β1 or Notch following γ-secretase inhibition. Thus, vascular SMCs in culture express neural stem cell markers typical of MVSCs, concomitant with SMC differentiation markers, but do not retain their multipotency. The ultimate origin of these cells might have important implications for their use in investigations of vascular proliferative disease in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Babij P, Kawamoto S, White S, Adelstein RS, Periasamy M (1992) Differential expression of SM1 and SM2 myosin isoforms in cultured vascular smooth muscle. Am J Physiol 262:C607–C613

    PubMed  CAS  Google Scholar 

  • Bukovsky A (2009) Sex steroid-mediated reprogramming of vascular smooth muscle cells to stem cells and neurons: possible utilization of sex steroid combinations for regenerative treatment without utilization of in vitro developed stem cells. Cell Cycle 8:4079–4084

    Article  PubMed  CAS  Google Scholar 

  • Cahill PA, Hassid A (1993) Differential antimitogenic effectiveness of atrial natriuretic peptides in primary versus subcultured rat aortic smooth muscle cells: relationship to expression of ANF-C receptors. J Cell Physiol 154:28–38. doi:10.1002/jcp.1041540105

    Article  PubMed  CAS  Google Scholar 

  • Cappadona C (1999) Phenotype dictates the growth response of vascular smooth muscle cells to pulse pressure in vitro. Exp Cell Res 250:174–186. doi:10.1006/excr.1999.4502

    Article  PubMed  CAS  Google Scholar 

  • Chamley JH, Campbell GR, Burnstock G (1974) Dedifferentiation, redifferentiation and bundle formation of smooth muscle cells in tissue culture: the influence of cell number and nerve fibres. J Embryol Exp Morphol 32:297–323

    PubMed  CAS  Google Scholar 

  • Chamley-Campbell J, Campbell GR, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59:1–61

    PubMed  CAS  Google Scholar 

  • Ciceri P, Volpi E, Brenna I, Arnaboldi L, Neri L, Brancaccio D, Cozzolino M (2012) Combined effects of ascorbic acid and phosphate on rat VSMC osteoblastic differentiation. Nephrol Dial Transplant 27:122–127. doi:10.1093/ndt/gfr284

    Article  PubMed  CAS  Google Scholar 

  • Corada M, Orsenigo F, Morini MF, Pitulescu ME, Bhat G, Nyqvist D, Breviario F, Conti V, Briot A, Iruela-Arispe ML, Adams RH, Dejana E (2013) Sox17 is indispensable for acquisition and maintenance of arterial identity. Nat Commun 4:2609. doi:10.1038/ncomms3609

    Article  PubMed  PubMed Central  Google Scholar 

  • Doi H, Iso T, Shiba Y, Sato H, Yamazaki M, Oyama Y, Akiyama H, Tanaka T, Tomita T, Arai M, Takahashi M, Ikeda U, Kurabayashi M (2009) Notch signaling regulates the differentiation of bone marrow-derived cells into smooth muscle-like cells during arterial lesion formation. Biochem Biophys Res Commun 381:654–659. doi:10.1016/j.bbrc.2009.02.116

    Article  PubMed  CAS  Google Scholar 

  • Gallagher PJ, Jin Y, Killough G, Blue EK, Lindner V (2000) Alterations in expression of myosin and myosin light chain kinases in response to vascular injury. Am J Physiol Cell Physiol 279:C1078–C1087

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gao W, Ferguson G, Connell P, Walshe T, Murphy R, Birney YA, O'Brien C, Cahill PA (2007) High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1alpha-dependent pathway. J Mol Cell Cardiol 42:609–619. doi:10.1016/j.yjmcc.2006.12.006

    Article  PubMed  CAS  Google Scholar 

  • Gomez D, Owens GK (2012) Smooth muscle cell phenotypic switching in atherosclerosis. Cardiovasc Res 95:156–164. doi:10.1093/cvr/cvs115

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gomez D, Shankman LS, Nguyen AT, Owens GK (2013) Detection of histone modifications at specific gene loci in single cells in histological sections. Nat Methods 10:171–177. doi:10.1038/nmeth.2332

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Graves DC, Yablonka-Reuveni Z (2000) Vascular smooth muscle cells spontaneously adopt a skeletal muscle phenotype: a unique Myf5-/MyoD+ myogenic program. J Histochem Cytochem 48:1173–1193. doi:10.1177/002215540004800902

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Stice SL, Boyd NL, Chen SY (2013) A novel in vitro model system for smooth muscle differentiation from human embryonic stem cell-derived mesenchymal cells. Am J Physiol Cell Physiol 304:C289–C298. doi:10.1152/ajpcell.00298.2012

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holifield B, Helgason T, Jemelka S, Taylor A, Navran S, Allen J, Seidel C (1996) Differentiated vascular myocytes: are they involved in neointimal formation? J Clin Invest 97:814–825. doi:10.1172/JCI118481

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang YL, Shi GY, Lee H, Jiang MJ, Huang BM, Wu HL, Yang HY (2009) Thrombin induces nestin expression via the transactivation of EGFR signalings in rat vascular smooth muscle cells. Cell Signal 21:954–968. doi:10.1016/j.cellsig.2009.02.005

  • John N, Cinelli P, Wegner M, Sommer L (2011) Transforming growth factor β-mediated Sox10 suppression controls mesenchymal progenitor generation in neural crest stem cells. Stem Cells 29:689–699. doi:10.1002/stem.607

    Article  PubMed  CAS  Google Scholar 

  • Kane NM, Xiao Q, Baker AH, Luo Z, Xu Q, Emanueli C (2011) Pluripotent stem cell differentiation into vascular cells: a novel technology with promises for vascular re(generation). Pharmacol Ther 129:29–49. doi:10.1016/j.pharmthera.2010.10.004

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Shanley JR, Fox JC (1996) Serum stimulation, cell-cell interactions, and extracellular matrix independently influence smooth muscle cell phenotype in vitro. Am J Pathol 149:687–697

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuang S-Q, Kwartler CS, Byanova KL, Pham J, Gong L, Prakash SK, Huang J, Kamm KE, Stull JT, Sweeney HL, Milewicz DM (2012) Rare, nonsynonymous variant in the smooth muscle-specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and phenotype of smooth muscle cells. Circ Res 110:1411–1422. doi:10.1161/CIRCRESAHA.111.261743

  • Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, Agrawal S, Schaffer DV, Li S (2010) Transforming growth factor-β and notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742. doi:10.1002/stem.319

    Article  PubMed  CAS  Google Scholar 

  • Liao XB, Zhang ZY, Yuan K, Liu Y, Feng X, Cui RR, Hu YR, Yuan ZS, Gu L, Li SJ, Mao DA, Lu Q, Zhou XM, Jesus Perez VA de, Yuan LQ (2013) MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology 154:3344–3352. doi:10.1210/en.2012-2236

  • McEntee G, Minguzzi S, O’Brien K, Ben Larbi N, Loscher C, O'Fágáin C, Parle-McDermott A (2011) The former annotated human pseudogene dihydrofolate reductase-like 1 (DHFRL1) is expressed and functional. Proc Natl Acad Sci U S A 108:15157–15162. doi:10.1073/pnas.1103605108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Metz R, Patterson J, Wilson E (2012) Vascular smooth muscle cells: isolation, culture, and characterization. In: Peng X, Antonyak M (eds) Methods in molecular biology. Humana, Totowa, pp 169–176

    Google Scholar 

  • Morrow D, Scheller A, Birney YA, Sweeney C, Guha S, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA (2005) Notch-mediated CBF-1/RBP-J{kappa}-dependent regulation of human vascular smooth muscle cell phenotype in vitro. Am J Physiol Cell Physiol 289:C1188–C1196. doi:10.1152/ajpcell.00198.2005

    Article  PubMed  CAS  Google Scholar 

  • Morrow D, Guha S, Sweeney C, Birney Y, Walshe T, O'Brien C, Walls D, Redmond EM, Cahill PA (2008) Notch and vascular smooth muscle cell phenotype. Circ Res 103:1370–1382. doi:10.1161/CIRCRESAHA.108.187534

  • Oikawa H, Hayashi K, Maesawa C, Masuda T, Sobue K (2010) Expression profiles of nestin in vascular smooth muscle cells in vivo and in vitro. Exp Cell Res 316:940–950. doi:10.1016/j.yexcr.2009.10.025

    Article  PubMed  CAS  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801. doi:10.1152/physrev.00041.2003

    Article  PubMed  CAS  Google Scholar 

  • Rong JX, Shapiro M, Trogan E, Fisher EA (2003) Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A 100:13531–13536. doi:10.1073/pnas.1735526100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sorci G (2013) S100B protein in tissue development, repair and regeneration. World J Biol Chem 4:1–12. doi:10.4331/wjbc.v4.i1.1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sweeney C, Morrow D, Birney YA, Coyle S, Hennessy C, Scheller A, Cummins PM, Walls D, Redmond EM, Cahill PA (2004) Notch 1 and 3 receptor signaling modulates vascular smooth muscle cell growth, apoptosis, and migration via a CBF-1/RBP-Jk dependent pathway. FASEB J 18:1421–1423. doi:10.1096/fj.04-1700fje

    PubMed  CAS  Google Scholar 

  • Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu JS, Helms JA, Li S (2012) Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun 3:875. doi:10.1038/ncomms1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang Z, Wang A, Wang D, Li S (2013) Smooth muscle cells: to be or not to be?: response to Nguyen et al. Circ Res 112:23–26. doi:10.1161/CIRCRESAHA.112.281055

    Article  PubMed  CAS  Google Scholar 

  • Wang A, Tang Z, Li X, Jiang Y, Tsou DA, Li S (2012) Derivation of smooth muscle cells with neural crest origin from human induced pluripotent stem cells. Cells Tissues Organs 195:5–14. doi:10.1159/000331412

    Article  PubMed  Google Scholar 

  • Wilson M, Koopman P (2002) Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Genet Dev 12:441–446. doi:10.1016/S0959-437X(02)00323-4

    Article  PubMed  CAS  Google Scholar 

  • Worth NF, Rolfe BE, Song J, Campbell GR (2001) Vascular smooth muscle cell phenotypic modulation in culture is associated with reorganisation of contractile and cytoskeletal proteins. Cell Motil Cytoskeleton 49:130–145. doi:10.1002/cm.1027

    Article  PubMed  CAS  Google Scholar 

  • Zanellato AM, Borrione AC, Giuriato L, Tonello M, Scannapieco G, Pauletto P, Sartore S (1990) Myosin isoforms and cell heterogeneity in vascular smooth muscle. I. Developing and adult bovine aorta. Dev Biol 141:431–446. doi:10.1016/0012-1606(90)90398-3

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Cahill.

Additional information

This study was supported in part by funds from Science Foundation Ireland (SFI-11/PI/1128 to P.A. Cahill) and the National Institutes of Health (R00HL095650 to D. Morrow and R21AA020365 to E.M. Redmond).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kennedy, E., Mooney, C.J., Hakimjavadi, R. et al. Adult vascular smooth muscle cells in culture express neural stem cell markers typical of resident multipotent vascular stem cells. Cell Tissue Res 358, 203–216 (2014). https://doi.org/10.1007/s00441-014-1937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-014-1937-2

Keywords

Navigation