Skip to main content

Advertisement

Log in

Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Dental pulp stem cells (DPSCs) are an attractive alternative mesenchymal stem cell (MSC) source because of their isolation simplicity compared with the more invasive methods associated with harvesting other MSC sources. However, the isolation method to be favored for obtaining DPSC cultures remains under discussion. This study compares the stem cell properties and multilineage differentiation potential of DPSCs obtained by the two most widely adapted isolation procedures. DPSCs were isolated either by enzymatic digestion of the pulp tissue (DPSC-EZ) or by the explant method (DPSC-OG), while keeping the culture media constant throughout all experiments and in both isolation methods. Assessment of the stem cell properties of DPSC-EZ and DPSC-OG showed no significant differences between the two groups with regard to proliferation rate and colony formation. Phenotype analysis indicated that DPSC-EZ and DPSC-OG were positive for CD29, CD44, CD90, CD105, CD117 and CD146 expression without any significant differences. The multilineage differentiation potential of both stem cell types was confirmed by using standard immuno(histo/cyto)chemical staining together with an in-depth ultrastructural analysis by means of transmission electron microscopy. Our results indicate that both DPSC-EZ and DPSC-OG could be successfully differentiated into adipogenic, chrondrogenic and osteogenic cell types, although the adipogenic differentiation of both stem cell populations was incomplete. The data suggest that both the enzymatic digestion and outgrowth method can be applied to obtain a suitable autologous DPSC resource for tissue replacement therapies of both bone and cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • About I, Bottero MJ, De Denato P, Camps J, Franquin JC, Mitsiadis TA (2000) Human dentin production in vitro. Exp Cell Res 258:33–41

    Article  PubMed  CAS  Google Scholar 

  • Arthur A, Rychkov G, Shi S, Koblar SA, Gronthos S (2008) Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26:1787–1795

    Article  PubMed  CAS  Google Scholar 

  • Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, Geurtsen W (2011) Assessment of the impact of two different isolation methods on the osteo/odontogenic differentiation potential of human dental stem cells derived from deciduous teeth. Calcif Tissue Int 88:130–141

    Article  PubMed  CAS  Google Scholar 

  • Couble ML, Farges JC, Bleicher F, Perrat-Mabillon B, Boudeulle M, Magloire H (2000) Odontoblast differentiation of human dental pulp cells in explant cultures. Calcif Tissue Int 66:129–138

    Article  PubMed  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  • Ellerstrom C, Hyllner J, Strehl R (2010) Single cell enzymatic dissociation of human embryonic stem cells: a straightforward, robust, and standardized culture method. Methods Mol Biol 584:121–134

    Article  PubMed  Google Scholar 

  • Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 109:235–242

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT (2011) Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci USA 108:6503–6508

    Article  PubMed  CAS  Google Scholar 

  • Friedenstein AJ (1961) Osteogenetic activity of transplanted transitional epithelium. Acta Anat (Basel) 45:31–59

    Article  CAS  Google Scholar 

  • Gagari E, Rand MK, Tayari L, Vastardis H, Sharma P, Hauschka PV, Damoulis PD (2006) Expression of stem cell factor and its receptor, c-kit, in human oral mesenchymal cells. Eur J Oral Sci 114:409–415

    Article  PubMed  CAS  Google Scholar 

  • Graziano A, D’aquino R, Laino G, Proto A, Giuliano MT, Pirozzi G, De Rosa A, Di Napoli D, Papaccio G (2008) Human CD34+ stem cells produce bone nodules in vivo. Cell Prolif 41:1–11

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, Denbesten P, Robey PG, Shi S (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81:531–535

    Article  PubMed  CAS  Google Scholar 

  • Huang GT, Sonoyama W, Chen J, Park SH (2006) In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res 324:225–236

    Article  PubMed  Google Scholar 

  • Huang GT, Yamaza T, Shea LD, Djouad F, Kuhn NZ, Tuan RS, Shi S (2010) Stem/progenitor cell-mediated de novo regeneration of dental pulp with newly deposited continuous layer of dentin in an in vivo model. Tissue Eng Part A 16:605–615

    Article  PubMed  CAS  Google Scholar 

  • Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M (2008) A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells 26:2408–2418

    Article  PubMed  Google Scholar 

  • Jing W, Xiao J, Xiong Z, Yang X, Huang Y, Zhou M, Chen S, Lin Y, Tian W (2011) Explant culture: an efficient method to isolate adipose-derived stromal cells for tissue engineering. Artif Organs 35:105–112

    PubMed  CAS  Google Scholar 

  • Karamzadeh R, Eslaminejad MB, Aflatoonian R (2012) Isolation, characterization and comparative differentiation of human dental pulp stem cells derived from permanent teeth by using two different methods. J Vis Exp 69:pii 4372

    Google Scholar 

  • Karaoz E, Dogan BN, Aksoy A, Gacar G, Akyuz S, Ayhan S, Genc ZS, Yuruker S, Duruksu G, Demircan PC, Sariboyaci AE (2010) Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol 133:95–112

    Article  PubMed  CAS  Google Scholar 

  • Karaoz E, Demircan PC, Saglam O, Aksoy A, Kaymaz F, Duruksu G (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136:455–473

    Article  PubMed  Google Scholar 

  • Kiraly M, Porcsalmy B, Pataki A, Kadar K, Jelitai M, Molnar B, Hermann P, Gera I, Grimm WD, Ganss B, Zsembery A, Varga G (2009) Simultaneous PKC and CAMP activation induces differentiation of human dental pulp stem cells into functionally active neurons. Neurochem Int 55:323–332

    Article  PubMed  CAS  Google Scholar 

  • Laino G, D’aquino R, Graziano A, Lanza V, Carinci F, Naro F, Pirozzi G, Papaccio G (2005) A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (lab). J Bone Miner Res 20:1394–1402

    Article  PubMed  Google Scholar 

  • Laino G, Graziano A, D’aquino R, Pirozzi G, Lanza V, Valiante S, De Rosa A, Naro F, Vivarelli E, Papaccio G (2006) An approachable human adult stem cell source for hard-tissue engineering. J Cell Physiol 206:693–701

    Article  PubMed  CAS  Google Scholar 

  • Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104:13325–13330

    Article  PubMed  CAS  Google Scholar 

  • Martens W, Wolfs E, Struys T, Politis C, Bronckaers A, Lambrichts I (2012) Expression pattern of basal markers in human dental pulp stem cells and tissue. Cells Tissues Organs 196:490–500

    Article  PubMed  CAS  Google Scholar 

  • Mikami Y, Ishii Y, Watanabe N, Shirakawa T, Suzuki S, Irie S, Isokawa K, Honda MJ (2011) Cd271/p75(NTR) inhibits the differentiation of mesenchymal stem cells into osteogenic, adipogenic, chondrogenic, and myogenic lineages. Stem Cells Dev 20:901–913

    Article  PubMed  CAS  Google Scholar 

  • Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D, Medicetty S (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60

    Article  PubMed  CAS  Google Scholar 

  • Nakashima M, Iohara K, Sugiyama M (2009) Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration. Cytokine Growth Factor Rev 20:435–440

    Article  PubMed  CAS  Google Scholar 

  • Patel M, Smith AJ, Sloan AJ, Smith G, Cooper PR (2009) Phenotype and behaviour of dental pulp cells during expansion culture. Arch Oral Biol 54:898–908

    Article  PubMed  CAS  Google Scholar 

  • Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G, Becchetti E, Marchionni C, Alviano F, Fossati V, Staffolani N, Franchina M, Grossi A, Bagnara GP (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80:836–842

    Article  PubMed  Google Scholar 

  • Shi S, Gronthos S (2003) Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 18:696–704

    Article  PubMed  Google Scholar 

  • Spath L, Rotilio V, Alessandrini M, Gambara G, De Angelis L, Mancini M, Mitsiadis TA, Vivarelli E, Naro F, Filippini A, Papaccio G (2010) Explant-derived human dental pulp stem cells enhance differentiation and proliferation potentials. J Cell Mol Med 14:1635–1644

    Article  PubMed  CAS  Google Scholar 

  • Stanford CM, Jacobson PA, Eanes ED, Lembke LA, Midura RJ (1995) Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). J Biol Chem 270:9420–9428

    Article  PubMed  CAS  Google Scholar 

  • Struys T, Moreels M, Martens W, Donders R, Wolfs E, Lambrichts I (2010) Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells. Cells Tissues Organs 193:366–378

    Article  PubMed  Google Scholar 

  • Struys T, Moreels M, Martens W, Donders R, Wolfs E, Lambrichts I (2011) Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells. Cells Tissues Organs 193:366–378

    Article  PubMed  CAS  Google Scholar 

  • Struys T, Ketkar-Atre A, Gervois P, Leten C, Hilkens P, Martens W, Bronckaers A, Dresselaers T, Politis C, Lambrichts I, Himmelreich U (2012) Magnetic resonance imaging of human dental pulp stem cells in vitro and in vivo. Cell Transplant (in press)

  • Tsukamoto Y, Fukutani S, Shin-Ike T, Kubota T, Sato S, Suzuki Y, Mori M (1992) Mineralized nodule formation by cultures of human dental pulp-derived fibroblasts. Arch Oral Biol 37:1045–1055

    Article  PubMed  CAS  Google Scholar 

  • Waddington RJ, Youde SJ, Lee CP, Sloan AJ (2009) Isolation of distinct progenitor stem cell populations from dental pulp. Cells Tissues Organs 189:268–274

    Article  PubMed  Google Scholar 

  • Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22:1330–1337

    Article  PubMed  Google Scholar 

  • Zhang W, Walboomers XF, Shi S, Fan M, Jansen JA (2006) Multilineage differentiation potential of stem cells derived from human dental pulp after cryopreservation. Tissue Eng 12:2813–2823

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bronckaers.

Additional information

P. Hilkens and P. Gervois contributed equally to this paper

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Adipogenic differentiation of DPSC-EZ and DPSC-OG. Ultrastructurally, adipogenic differentiated cells are globularly shaped (f) with a cytoplasm filled with electron-dense vesicles (v in figure g and h), branched mitochondria (h, bMit) and dilated rough endoplasmatic reticulum (i, dER). Scale bars: a = 10 μm; b, c, d = 2 μm (JPEG 61 kb)

High resolution image (TIFF 9009 kb)

Supplementary Fig. 2

TEM analysis of 3D-chondrogenic differentiated DPSCs. Chondrogenic differentiated DPSC-EZ (a) and DPSC-OG (d) both display an elongated cell phenotype with a cytoplasm containing numerous ribosomes and electron-dense intracellular matrix vesicles (mv, figure e). Striated collagen fibers (cf) are abundant in the ECM (b). Cartilage fragments (ca) are present in the ECM of both cell types and are closely interacting with the surrounding DPSCs and ECM (c, f). Scale bars: a, d, e = 5 μm; b = 1 μm; c = 10 μm; f = 2 μm (JPEG 33 kb)

High resolution image (TIFF 4213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilkens, P., Gervois, P., Fanton, Y. et al. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 353, 65–78 (2013). https://doi.org/10.1007/s00441-013-1630-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1630-x

Keywords

Navigation