Skip to main content
Log in

Expression and cellular localization of monocarboxylate transporters (MCT2, MCT7, and MCT8) along the cattle gastrointestinal tract

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Fourteen members of the monocarboxylate transporter (MCT, SLC16) family have been identified, each having a different tissue distribution and substrate specificity. The expression of monocarboxylate transporters MCT1 and MCT4 have been studied in the gastrointestinal tract of ruminants; however, details of the expression of other MCT isoforms in the various parts of ruminant gastrointestinal tract are lacking. Reverse transcription with the polymerase chain reaction was used to study the regional distribution of MCT2, MCT3, and MCT5-MCT14 in the cattle gastrointestinal tract and verified the existence of MCT mRNA transcripts for MCT2, MCT3, MCT4, MCT7, MCT8, MCT9, MCT10, MCT13, and MCT14 in the ruminal and abomasal epithelia, mRNA transcripts for MCT2, MCT3, MCT4, MCT7, MCT8, MCT10, MCT13, and MCT14 in the jejunum, and mRNA transcripts for MCT2, MCT3, MCT4, MCT7, MCT8, MCT13, and MCT14 in the caecum of cattle. At the cellular level, immunohistochemical studies localized MCT2, MCT7, and MCT8 proteins in the cattle rumen, abomasum, jejunum, and caecum. This is the first study to detect the expression of various MCT isoforms in the gastrointestinal tract of a ruminant species. Our data suggest that these transporter proteins are involved in essential physiologic processes and are possible molecular targets for studying the regulation of the transport of short-chain monocarboxylates, aromatic amino acids, and thyroid hormones across the gastrointestinal tract of cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adeniyi KO, Olowookorun MO (1989) Gastric acid secretion and parietal cell mass: effects of thyroidectomy and thyroxine. Am J Physiol 256:G975–G978

    PubMed  CAS  Google Scholar 

  • Asplund MJ (1994) Structure and function of the ruminant digestive tract. In: Asplund MJ (ed) Principles of protein nutrition of ruminants. CRC Press, Boca Raton, pp 5–28

    Google Scholar 

  • Bröer S, Bröer A, Schneider HP, Stegen C, Halestrap AP, Deitmer JW (1999) Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J 341:529–535

    Article  PubMed  Google Scholar 

  • Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ (2003) Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278:40128–40135

    Article  PubMed  CAS  Google Scholar 

  • Gill RK, Saksena S, Alrefai WA, Sarwar Z, Goldstein JL, Carroll RE, Ramaswamy K, Dudeja PK (2005) Expression and membrane localization of MCT isoforms along the length of the human intestine. Am J Physiol Cell Physiol 289:C846–C852

    Article  PubMed  CAS  Google Scholar 

  • Graham C, Gatherar I, Haslam I, Glanville M, Simmons NL (2007) Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium. Am J Physiol 292:997–1007

    Google Scholar 

  • Halestrap AP (2012) The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64:1–9

    Article  PubMed  CAS  Google Scholar 

  • Helander HF (1981) The cells of the gastric mucosa. Int Rev Cytol 70:217–289

    Article  PubMed  CAS  Google Scholar 

  • Henning S, Rubin D, Shulman J (1994) Ontogeny of the intestinal mucosa. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 3rd edn. Raven, New York, pp 571–601

    Google Scholar 

  • Hilgendorf C, Ahlin G, Seithel A, Artursson P, Ungell AL, Karlsson J (2007) Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines. Drug Metab Dispos 35:1333–1340

    Article  PubMed  CAS  Google Scholar 

  • Kempton TJ, Nolan JV, Leng RA (1978) Principles for the use of non-protein nitrogen and by-pass proteins in diets of ruminants. FAO Animal Production and Health Paper 12. Ruminant nutrition: selected articles from the World Animal Review, FAO, Rome (http://www.fao.org/docrep/004/X6512E/X6512E16.htm)

  • Kennedy PM, Young BA, Christopherson RJ (1977) Studies on the relationship between thyroid function, cold acclimation and retention time of digesta in sheep. J Anim Sci 45:1084–1090

    PubMed  CAS  Google Scholar 

  • Kim DK, Kanai Y, Chairoungdua A, Matsuo H, Cha SH, Endou H (2001) Expression cloning of a Na+-independent aromatic amino acid transporter with structural similarity to H+/monocarboxylate transporters. J Biol Chem 276:17221–17228

    Article  PubMed  CAS  Google Scholar 

  • Kirat D, Kato S (2006) Monocarboxylate transporter 1 (MCT1) mediates transport of short-chain fatty acids in bovine caecum. Exp Physiol 91:835–844

    Article  PubMed  CAS  Google Scholar 

  • Kirat D, Kato S (2009) Monocarboxylate transporter genes in the mammary gland of lactating cows. Histochem Cell Biol 132:447–455

    Article  PubMed  CAS  Google Scholar 

  • Kirat D, Inoue H, Iwano H, Hirayama K, Yokota H, Taniyama H, Kato S (2006a) Monocarboxylate transporter 1 gene expression in the ovine gastrointestinal tract. Vet J 171:462–467

    Article  PubMed  CAS  Google Scholar 

  • Kirat D, Masuoka J, Hayashi H, Iwano H, Yokota H, Taniyama H, Kato S (2006b) Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen. J Physiol (Lond) 576:635–647

    Article  CAS  Google Scholar 

  • Kirat D, Matsuda Y, Yamashiki N, Hayashi H, Kato S (2007) Expression, cellular localization, and functional role of monocarboxylate transporter 4 (MCT4) in the gastrointestinal tract of ruminants. Gene 391:140–149

    Article  PubMed  CAS  Google Scholar 

  • Kirat D, Sallam K, Hayashi H, Miyasho T, Kato S (2009) Presence of ten isoforms of monocarboxylate transporter (MCT) family in the bovine adrenal gland. Mol Cell Endocrinol 298:89–100

    Article  PubMed  CAS  Google Scholar 

  • Koho N, Maijala V, Norberg H, Nieminen M, Pösö AR (2005) Expression of MCT1, MCT2 and MCT4 in the rumen, small intestine and liver of reindeer (Rangifer tarandus tarandus L.). Comp Biochem Physiol A Mol Integr Physiol 141:29–34

    Article  PubMed  Google Scholar 

  • Miller JK, Swanson EW, Lyke WA, Moss BR, Byrne WF (1974) Effect of thyroid status on digestive tract fill and flow rate of undigested residues in cattle. J Dairy Sci 57:193–197

    Article  PubMed  CAS  Google Scholar 

  • Moschen I, Bröer A, Galić S, Lang F, Bröer S (2012) Significance of short chain fatty acid transport by members of the monocarboxylate transporter family (MCT). Neurochem Res 37:2562–2568

    Article  PubMed  CAS  Google Scholar 

  • Müller F, Huber K, Pfannkuche H, Aschenbach JR, Breves G, Gäbel G(2002) Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1. Am J Physiol Gastrointest Liver Physiol 283:G1139–G1146

    PubMed  Google Scholar 

  • Psarra AM, Sekeris CE (2008) Steroid and thyroid hormone receptors in mitochondria. IUBMB Life 60:210–223

    Article  PubMed  CAS  Google Scholar 

  • Psarra AM, Solakidi S, Sekeris CE (2006) The mitochondrion as a primary site of action of steroid and thyroid hormones: presence and action of steroid and thyroid hormone receptors in mitochondria of animal cells. Mol Cell Endocrinol 246:21–33

    Article  PubMed  CAS  Google Scholar 

  • Rae C, Fekete AD, Kashem MA, Nasrallah FA, Bröer S (2012) Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem Res 37:2541–2553

    Article  PubMed  CAS  Google Scholar 

  • Ramadan T, Camargo SM, Summa V, Hunziker P, Chesnov S, Pos KM, Verrey F (2006) Basolateral aromatic amino acid transporter TAT1 (Slc16a10) functions as an efflux pathway. J Cell Physiol 206:771–779

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doaa Kirat.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 44 kb)

Supplementary Fig. S1

Localization of monocarboxylate transporter 1 (MCT1) protein in the cattle abomasum. a, b Color images of histological sections of cattle abomasum stained with hematoxylin and eosin. c, d Immunohistochemical image showing the presence of MCT1 in the cytoplasm of the apical domain of chief cells of cattle abomasum but not in the parietal cells. (JPEG 180 kb)

High resolution image (TIFF 829 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirat, D., Sallam, K.I. & Kato, S. Expression and cellular localization of monocarboxylate transporters (MCT2, MCT7, and MCT8) along the cattle gastrointestinal tract. Cell Tissue Res 352, 585–598 (2013). https://doi.org/10.1007/s00441-013-1570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1570-5

Keywords

Navigation