Skip to main content

Advertisement

Log in

Retinoic acid synthesis and metabolism are concurrent in the mouse uterus during peri-implantation

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Vitamin A (retinol) and its active metabolite, retinoic acid (RA), serve dual roles in the female reproductive tract. Cytochrome P450 26A1 (Cyp26a1), an RA-metabolizing enzyme, is involved in mammalian early pregnancy. In order to investigate the role of RA synthesis and metabolism during embryo implantation, we first investigated the spatiotemporal expression of RA-signal in the mouse uterus during the peri-implantation period. RA-signal-related molecules, including binding proteins, synthesizing enzymes, catabolizing enzymes and receptors, were all expressed in the mouse uterus during embryo implantation. The locations of the RA synthetic system (Aldh1a1, Aldh1a2, CRBP1) and catabolizing enzyme (Cyp26a1) were distinctive in the mouse uterus during the peri-implantation period. Aldh1a1 was located in the gland epithelium, whereas Aldh1a2 and CRBP1 were located in the stroma and Cyp26a1 was expressed in the luminal and glandular epithelium. These results demonstrate that RA synthesis occurs in the stroma, whereas RA metabolism takes place in the endometrial epithelium. When endometrial epithelial cells were isolated on day 4.5 of pregnancy and treated with E2 (17beta-estradiol) or a combination of E2 and progesterone, all-trans-RA (10 μM) significantly down-regulated the expression of LIF, HB-EF and CSF-1 in these cells in vitro. Taken together, these results suggest that the accumulation of RA in the stroma during mouse embryo implantation has an inhibitory effect on the expression of the three implantation-essential genes, LIF, HB-EGF and CSF-1. Therefore, the expression of Cyp26a1 in luminal and glandular epithelium might block the adverse effect of RA in order to promote successful embryo implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abrahamsohn PA, Zorn TMT (1993) Implantation and decidualization in rodents. J Exp Zool 266:603–628

    Article  PubMed  CAS  Google Scholar 

  • Arceci RJ, Shanahan F, Stanley ER, Pollard JW (1989) Temporal expression and location of colony-stimulating factor 1 (CSF-1) and its receptor in the female reproductive tract are consistent with CSF-1-regulated placental development. Proc Natl Acad Sci USA 86:8818–8822

    Article  PubMed  CAS  Google Scholar 

  • Aström A, Pettersson U, Chambon P, Voorhees JJ (1994) Retinoic acid induction of human cellular retinoic acid-binding protein-II gene transcription is mediated by retinoic acid receptor-retinoid X receptor heterodimers bound to one far upstream retinoic acid-responsive element with 5-base pair spacing. J Biol Chem 269:22334–22339

    PubMed  Google Scholar 

  • Bartocci A, Pollard JW, Stanley ER (1986) Regulation of colony-stimulating factor 1 during pregnancy. J Exp Med 164:956–961

    Article  PubMed  CAS  Google Scholar 

  • Bhatt H, Brunet LJ, Stewart CL (1991) Uterine expression of leukemia inhibitory factor coincides with the onset of blastocyst implantation. Proc Natl Acad Sci USA 88:11408–11412

    Article  PubMed  CAS  Google Scholar 

  • Bucco RA, Zheng WL, Wardlaw SA, Davis JT, Sierra-Rivera E, Osteen KG, Melner MH, Kakkad BP, Ong DE (1996) Regulation and localization of cellular retinol-binding protein, retinol-binding protein, cellular retinoic acid-binding protein (CRABP), and CRABP II in the uterus of the pseudopregnant rat. Endocrinology 137:3111–3122

    Article  PubMed  CAS  Google Scholar 

  • Bucco RA, Zheng WL, Davis JT, Sierra-Rivera E, Osteen KG, Chaudhary AK, Ong DE (1997) Cellular retinoic acid-binding protein. II. Presence in rat uterine epithelial cells correlates with their synthesis of retinoic acid. Biochemistry 36:4009–4014

    Article  PubMed  CAS  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    PubMed  CAS  Google Scholar 

  • Chen JR, Cheng J-G, Shatzer T, Sewell L, Hernandez L, Stewart CL (2000) Leukemia inhibitory factor can substitute for nidatory estrogen and is essential to inducing a receptive uterus for implantation but is not essential for subsequent embryogenesis. Endocrinology 141:4365–4372

    Article  PubMed  CAS  Google Scholar 

  • Cheng J-G, Chen JR, Hernandez L, Alvord WG, Stewart CL (2001) Dual control of LIF expression and LIF receptor function regulate Stat3 activation at the onset of uterine receptivity and embryo implantation. Proc Natl Acad Sci USA 98:8680–8685

    Article  PubMed  CAS  Google Scholar 

  • Chithalen JV, Luu L, Petkovich M, Jones G (2002) HPLC-MS/MS analysis of the products generated from all-trans-retinoic acid using recombinant human CYP26A. J Lipid Res 43:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Das SK, Wang XN, Paria BC, Damm D, Abraham JA, Klagsbrun M, Andrews GK, Dey SK (1994) Heparin-binding EGF-like growth factor gene is induced in the mouse uterus temporally by the blastocyst solely at the site of its apposition: a possible ligand for interaction with blastocyst EGF-receptor in implantation. Development 120:1071–1083

    PubMed  CAS  Google Scholar 

  • Dong D, Ruuska SE, Levinthal DJ, Noy N (1999) Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem 274:23695–23698

    Article  PubMed  CAS  Google Scholar 

  • Enders AC (1976) Anatomical aspects of implantation. J Reprod Fertil (Suppl) 25:1–15

    Google Scholar 

  • Enders AC, Schlafke S (1967) A morphological analysis of the early implantation stages in the rat. Am J Anat 120:185–225

    Article  Google Scholar 

  • Everts HB, Sundberg JP, Ong DE (2005) Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res 308:309–319

    Article  PubMed  CAS  Google Scholar 

  • Fazleabas AT, Donnelly KM, Mavrogianis PA, Verhage HG (1994) Retinol-binding protein in the baboon (Papio anubis) uterus: immunohistochemical characterization and gene expression. Biol Reprod 50:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Sato T, Kaneko S, Gotoh O, Fujii-Kuriyama Y, Osawa K, Kato S, Hamada H (1997) Metabolic inactivation of retinoic acid by a novel P450 differentially expressed in developing mouse embryos. EMBO J 16:4163–4173

    Article  PubMed  CAS  Google Scholar 

  • Fukunaka K, Saito T, Wataba K, Ashihara K, Ito E, Kudo R (2001) Changes in expression and subcellular localization of nuclear retinoic acid receptors in human endometrial epithelium during the menstrual cycle. Mol Hum Reprod 7:437–446

    Article  PubMed  CAS  Google Scholar 

  • Giguère V, Lyn S, Yip P, Siu CH, Amin S (1990) Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc Natl Acad Sci USA 87:6233–6237

    Article  PubMed  Google Scholar 

  • Han B-C, Xia H-F, Sun J, Yang Y, Peng J-P (2010) Retinoic acid-metabolizing enzyme cytochrome P450 26a1 (cyp26a1) is essential for implantation: functional study of its role in early pregnancy. J Cell Physiol 223:471–479

    PubMed  CAS  Google Scholar 

  • Hidalgo C, Díez C, Duque P, Prendes JM, Rodríguez A, Goyache F, Fernández I, Facal N, Ikeda S, Alonso-Montes C, Gómez E (2005) Oocytes recovered from cows treated with retinol become unviable as blastocysts produced in vitro. Reproduction 129:411–421

    Article  PubMed  CAS  Google Scholar 

  • Huang FJ, Shen CC, Chang SY, Wu TCJ, Hsuuw YD (2003) Retinoic acid decreases the viability of mouse blastocysts in vitro. Hum Reprod 18:130–136

    Article  PubMed  CAS  Google Scholar 

  • Huang F-J, Hsu Y-C, Kang H-Y, Chang S-Y, Hsuuw Y-D, Huang K-E (2005) Effects of retinoic acid on the inner cell mass in mouse blastocysts. Fertil Steril 83:238–242

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Chambon P (1995) Nonsteroid nuclear receptors: what are genetic studies telling us about their role in real life? Cell 83:859–869

    Article  PubMed  CAS  Google Scholar 

  • Kessel M, Gruss P (1991) Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid. Cell 67:89–104

    Article  PubMed  CAS  Google Scholar 

  • Kumarendran MK, Loughney AD, Prentice A, Thomas EJ, Redfern CPF (1996) Nuclear retinoid receptor expression in normal human endometrium throughout the menstrual cycle. Mol Hum Reprod 2:123–129

    Article  PubMed  CAS  Google Scholar 

  • Li X-H, Kakkad B, Ong DE (2004) Estrogen directly induces expression of retinoic acid biosynthetic enzymes, compartmentalized between the epithelium and underlying stromal cells in rat uterus. Endocrinology 145:4756–4762

    Article  PubMed  CAS  Google Scholar 

  • Mark M, Ghyselinck NB, Chambon P (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol 46:451–480

    Article  PubMed  CAS  Google Scholar 

  • Napoli JL (1993) Biosynthesis and metabolism of retinoic acid: roles of CRBP and CRABP in retinoic acid homeostasis. J Nutr 123:362–366

    PubMed  CAS  Google Scholar 

  • Napoli JL, Posch KP, Fiorella PD, Boerman M (1991) Physiological occurrence, biosynthesis and metabolism of retinoic acid: evidence for roles of cellular retinol-binding protein (CRBP) and cellular retinoic acid-binding protein (CRABP) in the pathway of retinoic acid homeostasis. Biomed Pharmacother 45:131–143

    Article  PubMed  CAS  Google Scholar 

  • Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448

    Article  PubMed  CAS  Google Scholar 

  • Ong DE (1994) Cellular transport and metabolism of vitamin A: roles of the cellular retinoid-binding proteins. Nutr Rev 52:S24–S31

    Article  PubMed  CAS  Google Scholar 

  • Parr EL, Tung HN, Parr MB (1987) Apoptosis as the mode of uterine epithelial cell death during embryo implantation in mice and rats. Biol Reprod 36:211–225

    Article  PubMed  CAS  Google Scholar 

  • Petkovich M (1992) Regulation of gene expression by vitamin A: the role of nuclear retinoic acid receptors. Annu Rev Nutr 12:443–471

    Article  PubMed  CAS  Google Scholar 

  • Pollard JW, Hunt JS, Wiktor-Jedrzejczak W, Stanley ER (1991) A pregnancy defect in the osteopetrotic (opop) mouse demonstrates the requirement for CSF-1 in female fertility. Dev Biol 148:273–283

    Article  PubMed  CAS  Google Scholar 

  • Psychoyos A (1973) Endocrine control of egg implantation. In: Greep RO, Astwood EG, Geiger SR (eds) Handbook of Physiology. American Physiological Society, Washington, DC, pp 187–215

    Google Scholar 

  • Sakai Y, Meno C, Fujii H, Nishino J, Shiratori H, Saijoh Y, Rossant J, Hamada H (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse embryo. Genes Dev 15:213–225

    Article  PubMed  CAS  Google Scholar 

  • Schlafke S, Enders AC (1975) Cellular basis of interaction between trophoblast and uterus at implantation. Biol Reprod 12:41–65

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui NA, Loughney A, Thomas EJ, Dunlop W, Redfern CPF (1994) Cellular retinoid binding proteins and nuclear retinoic acid receptors in endometrial epithelial cells. Hum Reprod 9:1410–1416

    PubMed  CAS  Google Scholar 

  • Stewart CL, Kaspar P, Brunet LJ, Bhatt H, Gadi I, Kontgen F, Abbondanzo SJ (1992) Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359:76–79

    Article  PubMed  CAS  Google Scholar 

  • Tarrade A, Rochette-Egly C, Guibourdenche J, Evain-Brion D (2000) The expression of nuclear retinoid receptors in human implantation. Placenta 21:703–710

    Article  PubMed  CAS  Google Scholar 

  • Tsai M, O’Malley BW (1994) Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 63:451–486

    Article  PubMed  CAS  Google Scholar 

  • Vermot J, Fraulob V, Dollé P, Niederreither K (2000) Expression of enzymes synthesizing (aldehyde dehydrogenase 1 and retinaldehyde dehydrogenase 2) and metabolizing (Cyp26) retinoic acid in the mouse female reproductive system. Endocrinology 141:3638–3645

    Article  PubMed  CAS  Google Scholar 

  • Wardlaw SA, Bucco RA, Zheng WL, Ong DE (1997) Variable expression of cellular retinol- and cellular retinoic acid-binding proteins in the rat uterus and ovary during the estrous cycle. Biol Reprod 56:125–132

    Article  PubMed  CAS  Google Scholar 

  • White JA, Guo Y-D, Baetz K, Beckett-Jones B, Bonasoro J, Hsu KE, Dilworth FJ, Jones G, Petkovich M (1996) Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem 271:29922–29927

    Article  PubMed  CAS  Google Scholar 

  • White JA, Beckett-Jones B, Guo Y-D, Dilworth FJ, Bonasoro J, Jones G, Petkovich M (1997) cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450 (CYP26). J Biol Chem 272:18538–18541

    Article  PubMed  CAS  Google Scholar 

  • Wiktor-Jedrzejczak W, Urbanowska E, Aukerman SL, Pollard JW, Stanley ER, Ralph P, Ansari AA, Sell KW, Szperl M (1991) Correction by CSF-1 of defects in the osteopetrotic op/op mouse suggests local, developmental, and humoral requirements for this growth factor. Exp Hematol 19:1049–1054

    PubMed  CAS  Google Scholar 

  • Xia H-F, Ma J-J, Sun J, Yang Y, Peng J-P (2010) Retinoic acid metabolizing enzyme CYP26A1 is implicated in rat embryo implantation. Hum Reprod 25:2985–2998

    Article  PubMed  CAS  Google Scholar 

  • Xie H, Wang H, Tranguch S, Iwamoto R, Mekada E, DeMayo FJ, Lydon JP, Das SK, Dey SK (2007) Maternal heparin-binding-EGF deficiency limits pregnancy success in mice. Proc Natl Acad Sci USA 104:18315–18320

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, McCaffery P, Ivins KJ, Neve RL, Hogan P, Chin WW, Dräger UC (1996) Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase. Eur J Biochem 240:15–22

    Article  PubMed  CAS  Google Scholar 

  • Zheng WL, Ong DE (1998) Spatial and temporal patterns of expression of cellular retinol-binding protein and cellular retinoic acid-binding proteins in rat uterus during early pregnancy. Biol Reprod 58:963–970

    Article  PubMed  CAS  Google Scholar 

  • Zheng WL, Sierra-Rivera E, Luan J, Osteen KG, Ong DE (2000) Retinoic acid synthesis and expression of cellular retinol-binding protein and cellular retinoic acid-binding protein type II are concurrent with decidualization of rat uterine stromal cells. Endocrinology 141:802–808

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (No. 2011CB944402), the National Natural Science Foundation of China (No. 31171435) and the National Key Technology R&D Program (2012BAI31B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-pian Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Jj., Han, Bc., Yang, Y. et al. Retinoic acid synthesis and metabolism are concurrent in the mouse uterus during peri-implantation. Cell Tissue Res 350, 525–537 (2012). https://doi.org/10.1007/s00441-012-1507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-012-1507-4

Keywords

Navigation