Skip to main content

Advertisement

Log in

Modes of cell death in the pupal perivisceral fat body tissue of the silkworm Bombyx mori L.

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Cell death is a scheduled event during animal development and tissue turnover. Here, we affirm the presence of two major pathways of programmed cell death (PCD), viz. apoptotic and autophagic cell death, in the disintegrated pupal perivisceral (PV) fat body during pupal-adult metamorphosis. The acridine orange (a vital stain for apoptosis) staining pattern and DNA fragmentation assay have revealed the exact day (6th day of the pupal stage) of disintegration in the PV fat body as represented by chromatin condensation and DNA laddering. Electron microscopy and scanning electron microscopy have demonstrated the presence of cytoplasmic budding and giant autophagic vacuoles and the low numbers of mitochondria, all of which are attributes of autophagic cell death. Immunoblot analysis of proteosomal subunits 20S and 26S has established the involvement of proteolytic activity during PCD of PV tissue. Lysosomal participation during the PCD of PV tissues has been confirmed by the elevated level of the marker enzyme, acid phosphatase, which is distinct on day 6 of the pupal period. The results of the present study have thus ascertained the co-existence of both autophagic and apoptotic cell death in PV fat body tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armbruster L, Levy M, Mathieu MN, Bautz AM (1986) Acid phosphatase activity in the haemolymph, hemocytes, fat body and salivary glands during larval and prepupal development in Calliphora erythrocephala (Diptera: Calliphridae). Comp Biochem Physiol 84:349–354

    Google Scholar 

  • Baehrecke EH (2003) Autophagic programmed cell death in Drosophilla. Cell Death Differ 10:940–945

    Article  CAS  PubMed  Google Scholar 

  • Beaulaton J, Lockshin RA (1977) Ultrastructural study of the normal degeneration of the intersegmental muscles of Anthereae polyphemus and Manduca sexta (Insecta, Lepidoptera) with particular reference of cellular autophagy. J Morphol 154:39–57

    Article  CAS  PubMed  Google Scholar 

  • Beaulaton J, Lockshin RA (1982) The relation of programmed cell death to development and reproduction: comparative studies and an attempt at classification. Int Rev Cytol 79:215–235

    Article  CAS  PubMed  Google Scholar 

  • Berendes HD, Ashburner M (1978) The salivary glands. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila. Academic Press, London, pp 453–498

    Google Scholar 

  • Bowen ID, Morgan SM, Mullarkey K (1993) Cell death in the salivary glands of metamorphosing Calliphora vomitoria. Cell Biol Int 17:13–33

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bursch W (2001) The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ 8:569–581

    Article  CAS  PubMed  Google Scholar 

  • Bursch W, Taper HS, Lauer B, Schulte-Hermann R (1985) Quantitative histological and histochemical studies on the occurrence and stage of apoptosis (controlled cell death) during regression of rat liver hyperplasia. Virchows Arch B Cell Pathol 50:153–166

    CAS  Google Scholar 

  • Bursch W, Ellinger A, Gerner C, Schulte-Hermann R (2004) Caspase-independent and autophagic programmed cell death. In: Lockshin R, Zakeri Z (eds) When cells die. II. A comprehensive evaluation of apoptosis and programmed cell death, 2nd edn. Wiley, New York, pp 275–310

    Google Scholar 

  • Castedo M, Perfettini JL, Roumier T, Yakushijin K, Horne D, Medema R, Kroemer G (2004) The cell cycle checkpoint kinase Chk2 is a negative regulator of mitotic catastrophe. Oncogene 27:4353–4361

    Article  Google Scholar 

  • Chinzei Y (1975) Introduction of histolysis by ecdysterone in vitro: degradation of anterior silk gland in silkworm, Bombyx mori (Lepidoptera: Bombycidae). Appl Entomol Zool 10:136–138

    Google Scholar 

  • Clarke PGH (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181:195–213

    Article  CAS  PubMed  Google Scholar 

  • Colombani J, Raisin S, Pantalacci S, Radimerski T, Montagne J, Leopold P (2003) A nutrient sensor mechanism controls Drosophila growth. Cell 114:739–749

    Article  CAS  PubMed  Google Scholar 

  • Dai JD, Gilbert LI (1991) Metamorphosis of the corpus allatum and degeneration of the prothoracic glands during the larval-pupal-adult transformation of Drosophila melanogaster: a cytophysiological analysis of the ring gland. Dev Biol 144:309–326

    Article  CAS  PubMed  Google Scholar 

  • Dai JD, Gilbert LI (1997) Programmed cell death of the prothoracic glands of Manduca sexta during pupal-adult metamorphosis. Insect Biochem Mol Biol 27:69–78

    Article  CAS  PubMed  Google Scholar 

  • Dai JD, Gilbert LI (1999) An in vitro analysis of ecdysteroid–elicited cell death in the prothoracic gland of Manduca sexta. Cell Tissue Res 297:319–327

    Article  CAS  PubMed  Google Scholar 

  • Farkas R, Mechler BM (2000) The timing of Drosophila salivary gland apoptosis displays an l(2)gl-dose response. Cell Death Differ 7:89–101

    Article  CAS  PubMed  Google Scholar 

  • Gregorc A, Bowen ID (1997) Programmed cell death in the honey–bee (Apis mellifera L.) larvae midgut. Cell Biol Int 21:151–158

    Article  CAS  PubMed  Google Scholar 

  • Halaby R, Martinez ML, Lockshin RA, Zakeri Z (2003) 20-Hydroxyecdysone induces apoptosis in the labial gland of Manduca sexta. J Res Lepid 37:3–10

    Google Scholar 

  • Henrickson PA, Clever U (1972) Protease activity and cell death during metamorphosis in the salivary gland of Chironomus tentans. J Insect Physiol 18:1981–2004

    Article  Google Scholar 

  • Ianella P, Azeredo-Oliveira MTV, Itoyama MM (2008) Programmed cell death in salivary glands of Drosophila arizonae and Drosophila mulleri. Genet Mol Res 7:476–486

    Article  CAS  PubMed  Google Scholar 

  • Iwanaga M, Kang WK, Kobayashi M, Maeda S (2000) Baculovirus infection blocks the progression of fat body degradation during metamorphosis in Bombyx mori. Arch Virol l145:1763–1771

    Article  Google Scholar 

  • Jiang C, Baehrecke EH, Thummel CS (1997) Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124:4673–4683

    CAS  PubMed  Google Scholar 

  • Jiang C, Lamblin AF, Steller H, Thummel CS (2000) A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 5:445–455

    Article  CAS  PubMed  Google Scholar 

  • Jochova J, Zakeri Z, Lockshin RA (1997) Rearrangement of the tubulin and actin cytoskeleton during programmed cell death in Drosophila salivary glands. Cell Death Differ 4:140–149

    Article  CAS  PubMed  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  Google Scholar 

  • Laszlo L, Doherty FJ, Osborn NU, Mayer RJ (1990) Ubiquitinated protein conjugates are specifically enriched in the lysosomal system of fibroblasts. FEBS Lett 261:365–368

    Article  CAS  PubMed  Google Scholar 

  • Lee CY, Baehrecke EH (2001) Steroid regulation of autophagic programmed cell death during development. Development 128:1443–1455

    CAS  PubMed  Google Scholar 

  • Levy M, Bautz AM (1985) Degeneration of larval salivary glands during metamorphosis of the blowfly Calliphora erytrocephala Meigen (Diptera: Calliphoridae). Int J Insect Morphol Embryol 14:281–290

    Article  CAS  Google Scholar 

  • Lockshin RA (1985) Programmed cell death. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol. 2. Pergamon Press, Oxford, pp 301–317

    Google Scholar 

  • Lockshin RA, Williams CM (1965) Programmed cell death. III. Neural control of the breakdown of the intersegmental muscles of silkmoths. J Insect Physiol 11:601–610

    Article  CAS  PubMed  Google Scholar 

  • Lockshin RA, Zakeri ZF (1990) Programmed cell death: new thoughts and relevance to aging. J Gerontol 45:B135–B140

    CAS  PubMed  Google Scholar 

  • Lockshin RA, Zakeri Z (2004a) Apoptosis, autophagy and more. Int J Biochem 36:2405–2419

    Article  CAS  Google Scholar 

  • Lockshin RA, Zakeri Z (2004b) Caspase–independent cell death? Oncogene 23:2766–2773

    Article  CAS  PubMed  Google Scholar 

  • Low P, Bussell K, Dawson SP, Billett MA, Mayer RJ, Reynolds SE (1997) Expression of a 26S proteosome ATPase subunit, MS73, in muscles that undergo developmentally programmed cell death, and its control by ecdysteroid hormones in the insect Manduca sexta. FEBS Lett 400:345–349

    Article  CAS  PubMed  Google Scholar 

  • Martin DN, Baehrecke EH (2004) Caspases function in autophagic programmed cell death in Drosophila. Development 131:275–284

    Article  CAS  PubMed  Google Scholar 

  • Matarrese P, Tinari A, Mormone E, Bianco GA, Toscano MA, Ascione B, Rabinovich GA, Malorni W (2005) Galectin-1 sensitizes resting human T lymphocytes to Fas (CD95)-mediated cell death via mitochondrial hyperpolarization, budding and fission. J Biol Chem 280:6969–6985

    Article  CAS  PubMed  Google Scholar 

  • Mayer RJ, Lowe J, Landon M, McDermott H, Tuckwell J, Doherty F, Laszlo L (1991) Ubiquitin and the lysosome system: molecular immunopathology reveals the connection. Biomed Biochim Acta 50:333–341

    CAS  PubMed  Google Scholar 

  • Muller F, Adori C, Sass M (2004) Autophagic and apoptotic features during programmed cell death in the fat body of the tobacco hornworm (Manduca sexta). Eur J Cell Biol 83:67–78

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM (2001) Mechanisms underlying ubiqitination. Annu Rev Biochem 70:503–533

    Article  CAS  PubMed  Google Scholar 

  • Price GM (1973) Protein and nucleic acid metabolism in insect fat body. Biol Rev 48:333–375

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch ER, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp 16–19

    Google Scholar 

  • Schmidt-Capella IC, Hartfelder K (1998) Juvenile hormone effect on DNA synthesis and apoptosis in caste-specific differentiation of the larval honey bee (Apis mellifera L.) ovary. J Insect Physiol 44:385–391

    Article  Google Scholar 

  • Schultze-Osthoff K, Walczak H, Droge W, Krammer PH (1994) Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol 127:15–20

    Article  Google Scholar 

  • Schweichel JU, Merker HJ (1973) The morphology of various types of cell death in prenatal tissues. Teratology 7:253–266

    Article  Google Scholar 

  • Searle J, Kerr JFR, Bishop CJ (1982) Necrosis and apoptosis: distinct modes of cell death with fundamentally different significance. Pathol Ann 17:229–259

    Google Scholar 

  • Silva de Moraes RL, Bowen ID (2000) Modes of cell death in the hypopharyngeal gland of the honey bee (Apis mellifera L). Cell Biol Int 24:737–743

    Article  CAS  PubMed  Google Scholar 

  • Sumithra P, Chandrasekar R, Krishnan M (2009) Autophagic programmed cell death in the peripheral fat body tissues of the silk worm, Bombyx mori L. In: Chandrasekar R (ed) Short view on insect molecular biology, vol 1. International Book Mission Academic, South India, pp 159–173

    Google Scholar 

  • Suzuki T, Sakurai S, Iwami M (2009) Rectal sac distention is induced by 20-hydroxyecdysone in the pupa of Bombyx mori. J Insect Phys 55:250–254

    Article  CAS  Google Scholar 

  • Takemoto K, Kuranaga E, Tonoki A, Nagai T (2007) Local initiation of caspase activation in Drosophila salivary gland programmed cell death in vivo. Proc Natl Acad Sci USA 104:13367–13372

    Article  CAS  PubMed  Google Scholar 

  • Tapanainen JS, Tilly JL, Vihko KK, Hsueh AJW (1993) Hormonal control of apoptotic cell death in the testis: gonadotropins and androgens as testicular cell survival factors. Mol Endocrinol 7:643–650

    Article  CAS  PubMed  Google Scholar 

  • Terashima J, Yasuhara N, Iwami M, Sakurai S (2000) Programmed cell death triggered by insect steroid hormone, 20-hydroxyecdysone, in the anterior silk gland of the silkworm, Bombyx mori. Dev Genes Evol 210:545–558

    Article  CAS  PubMed  Google Scholar 

  • Tilly JL (1993) Ovarian follicular atresia: a model to study the mechanisms of physiological cell death. Endocrine J 1:67–72

    Google Scholar 

  • Tinari A, Garofalo T, Sorice M, Esposti MD, Malorni W (2007) Mitoptosis: different pathways for mitochondrial execution. Autophagy 3:282–284

    PubMed  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  • Truman JW, Schwartz LM (1982) Programmed death in the nervous system of a moth. Trends Neurosci 5:270–273

    Article  Google Scholar 

  • Vanishree V, Nirmala X, Arul E, Krishnan M (2005) Differential sequestration of storage proteins by various fat body tissues during post-larval development in silkworm, Bombyx mori. Invert Reprod Dev 48:81–88

    Google Scholar 

  • Von Gaudecker B, Schmale EM (1974) Substrate-histochemical investigations and ultrahistochemical demonstrations of acid phosphatase in larval and prepupal salivary glands of Drosophila melanogaster. Cell Tissue Res 155:75–89

    Article  Google Scholar 

  • Wyllie AH (1980) Glucocorticoid induced thymocyte apoptosis is associated with endogeneous endonuclease activation. Nature 284:555–556

    Article  CAS  PubMed  Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–300

    Article  CAS  PubMed  Google Scholar 

  • Wyllie AH, Morris RG, Smith AL, Dunlop D (1984) Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 142:66–77

    Article  Google Scholar 

  • Yin VP, Thummel CS (2005) Mechanisms of steroid-triggered programmed cell death in Drosophila. Cell Dev Biol 16:237–243

    Article  CAS  Google Scholar 

  • Yin VP, Thummel CS, Bashirullah A (2007) Down-regulation of inhibitor of apoptosis levels provides competence for steroid-triggered cell death. J Cell Biol 178:85–92

    Article  CAS  PubMed  Google Scholar 

  • Zahrebelski G, Nieminen AL, Al-Ghoul K, Qian T, Herman B, Lemasters JJ (1995) Progression of subcellular changes during chemical hyponoxia to cultured rat hepatocytes: a laser scanning confocal microscopic study. Hepatology 21:1361–1372

    CAS  PubMed  Google Scholar 

  • Zakeri ZF, Quaglino D, Latham T, Lockshin RA (1993) Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J 7:470–478

    CAS  PubMed  Google Scholar 

  • Zakeri Z, Bursch W, Tenniswood M, Lockshin RA (1995) Cell death: programmed apoptosis, necrosis, or other? Cell Death Differ 2:83–92

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to Prof. Martin Rechsteiner, Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA, for the generous gift of proteosome antibodies and to Dr. Lawrence I. Gilbert and Dr. James T. Warren, Department of Biology, The University of North Carolina at Chapel Hill, N.C., USA for the generous gift of 20E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukalingan Krishnan.

Additional information

The financial support of the CSIR and DST is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sumithra, P., Britto, C.P. & Krishnan, M. Modes of cell death in the pupal perivisceral fat body tissue of the silkworm Bombyx mori L.. Cell Tissue Res 339, 349–358 (2010). https://doi.org/10.1007/s00441-009-0898-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0898-3

Keywords

Navigation