Skip to main content

Advertisement

Log in

On the energy landscape of the mixed even p-spin model

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We investigate the energy landscape of the mixed even p-spin model with Ising spin configurations. We show that for any given energy level between zero and the maximal energy, with overwhelming probability there exist exponentially many distinct spin configurations such that their energies stay near this energy level. Furthermore, their magnetizations and overlaps are concentrated around some fixed constants. In particular, at the level of maximal energy, we prove that the Hamiltonian exhibits exponentially many orthogonal peaks. This improves the results of Chatterjee (Disorder chaos and multiple valleys in spin glasses, 2009) and Ding et al. (Ann Probab 43(6):3468–3493, 2015), where the former established a logarithmic size of the number of the orthogonal peaks, while the latter proved a polynomial size. Our second main result obtains disorder chaos at zero temperature and at any external field. As a byproduct, this implies that the fluctuation of the maximal energy is superconcentrated when the external field vanishes and obeys a Gaussian limit law when the external field is present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amit, D.J., Gutfreund, H., Sompolinsky, H.: Spin-glass models of neural networks. Phys. Rev. A 32, 1007–1018 (1985)

    Article  MathSciNet  Google Scholar 

  2. Auffinger, A., Ben Arous, G.: Complexity of random smooth functions on the high-dimensional sphere. Ann. Probab. 41(6), 4214–4247 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auffinger, A., Ben Arous, G., Černý, J.: Random matrices and complexity of spin glasses. Commun. Pure Appl. Math. 66(2), 165–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auffinger, A., Chen, W.-K.: The Parisi formula has a unique minimizer. Commun. Math. Phys. 335(3), 1429–1444 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Auffinger, A., Chen, W.-K.: Parisi formula for the ground state energy in the mixed p-spin model. ArXiv e-prints, June (2016)

  6. Auffinger, A., Chen, W.-K.: The Legendre structure of the Parisi formula. Commun. Math. Phys. 348(3), 751–770 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Arous, G., Gayrard, V., Kuptsov, A.: A new REM conjecture. In: In and out of equilibrium. 2, volume 60 of Progr. Probab., pp. 59–96. Birkhäuser, Basel (2008)

  8. Bhamidi, S., Dey, P.S., Nobel, A.B.: Energy Landscape for large average submatrix detection problems in Gaussian random matrices. ArXiv e-prints, November (2012)

  9. Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities. Oxford University Press, Oxford. A nonasymptotic theory of independence, With a foreword by Michel Ledoux (2013)

  10. Bovier, A., Klimovsky, A.: Fluctuations of the partition function in the generalized random energy model with external field. J. Math. Phys. 49(12), 125202, 27 (2008)

  11. Bovier, A., Kurkova, I.: Derrida’s generalised random energy models. I. Models with finitely many hierarchies. Ann. Inst. H. Poincaré Probab. Stat. 40(4), 439–480 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bovier, A., Kurkova, I.: Derrida’s generalized random energy models. II. Models with continuous hierarchies. Ann. Inst. H. Poincaré Probab. Stat. 40(4), 481–495 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bovier, A., Kurkova, I.: Energy statistics in disordered systems: the local REM conjecture and beyond. Acta Phys. Pol. B 36(9), 2621–2634 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Bovier, A., Kurkova, I.: Local energy statistics in disordered systems: a proof of the local REM conjecture. Commun. Math. Phys. 263(2), 513–533 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bovier, A., Kurkova, I.: A tomography of the GREM: beyond the REM conjecture. Commun. Math. Phys. 263(2), 535–552 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bovier, A., Kurkova, I.: Local energy statistics in spin glasses. J. Stat. Phys. 126(4–5), 933–949 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bruckner, A.: Differentiation of real functions, volume 5 of CRM Monograph Series, 2nd edn. American Mathematical Society, Providence, RI (1994)

  18. Charbonneau, P., Kurchan, J., Parisi, G., Urbani, P., Zamponi, F.: Fractal free energy landscapes in structural glasses. Nature Commun. 5 (2014). doi:10.1038/ncomms4725

  19. Chatterjee, S.: Chaos, concentration, and multiple valleys. ArXiv e-prints, October (2008)

  20. Chatterjee, S.: Disorder chaos and multiple valleys in spin glasses. ArXiv e-prints, July (2009)

  21. Chatterjee, S.: Superconcentration and related topics. Springer Monographs in Mathematics. Springer, Cham (2014)

    Book  Google Scholar 

  22. Chen, W.-K.: Disorder chaos in the Sherrington–Kirkpatrick model with external field. Ann. Probab. 41(5), 3345–3391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, W.-K.: Chaos in the mixed even-spin models. Commun. Math. Phys. 328(3), 867–901 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, W.-K.: Variational representations for the Parisi functional and the two-dimensional Guerra–Talagrand bound. ArXiv e-prints, January (2015)

  25. Chen, W.-K., Hsieh, H.-W., Hwang, C.-R., Sheu, Y.-C.: Disorder chaos in the spherical mean-field model. J. Stat. Phys. 160(2), 417–429 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, W.-K., Sen, A.: Parisi formula, disorder chaos and fluctuation for the ground state energy in the spherical mixed \(p\)-spin models. ArXiv e-prints, December (2015)

  27. Choromanska, A., Henaff, M., Mathieu, M., Ben Arous, G., LeCun, Y.: The loss surfaces of multilayer networks. In: Lebanon, G., Vishwanathan, S.V.N. (eds.) Proceedings of the eighteenth international conference on artificial intelligence and statistics, AISTATS 2015, San Diego, California, USA, May 9–12, 2015, volume 38 of JMLR workshop and conference proceedings. JMLR.org (2015)

  28. Dembo, A., Montanari, A., Sen, S.: Extremal cuts of sparse random graphs. ArXiv e-prints, March (2015)

  29. Ding, J., Eldan, R., Zhai, A.: On multiple peaks and moderate deviations for the supremum of a Gaussian field. Ann. Probab. 43(6), 3468–3493 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fyodorov, Y.V.: Complexity of random energy landscapes, glass transition, and absolute value of the spectral determinant of random matrices. Phys. Rev. Lett. 92(24):240601, 4, (2004)

  31. Fyodorov, Y.V., Williams, I.: Replica symmetry breaking condition exposed by random matrix calculation of landscape complexity. J. Stat. Phys. 129(5–6), 1081–1116 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gamarnik, D., Li, Q.: Finding a Large Submatrix of a Gaussian Random Matrix. ArXiv e-prints, February (2016)

  33. Jagannath, A., Tobasco, I.: A dynamic programming approach to the Parisi functional. Proc. Am. Math. Soc. 144(7), 3135–3150 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jagannath, A., Tobasco, I.: Low temperature asymptotics of spherical mean field spin glasses. ArXiv e-prints, February (2016)

  35. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, volume 113 of graduate texts in mathematics, 2nd edn. Springer, New York (1991)

  36. Kurchan, J., Parisi, G., Virasoro, M.A.: Barriers and metastable states as saddle points in the replica approach. J. Phys. I 3(8), 1819–1838 (1993)

    Google Scholar 

  37. Lee, Y.C., Doolen, G., Chen, H.H., Sun, G.Z., Maxwell, T., Lee, H.Y., Giles, C.L.: Machine learning using a higher order correlation network. Phys. D Nonlinear Phenom. 22(1), 276–306 (1986)

    Article  MathSciNet  Google Scholar 

  38. Mézard, M., Montanari, A.: Information, physics, and computation. Oxford graduate texts. Oxford University Press, Oxford (2009). Autre tirage: 2010, 2012

  39. Mézard, M., Parisi, G., Virasoro, M.A.: Spin glass theory and beyond, volume of 9 World Scientific Lecture Notes in Physics. World Scientific Publishing Co., Inc., Teaneck (1987)

  40. Panchenko, D.: On differentiability of the Parisi formula. Electron. Commun. Probab. 13, 241–247 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  41. Panchenko, D.: The Sherrington–Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York (2013)

    MATH  Google Scholar 

  42. Panchenko, D.: The Parisi formula for mixed \(p\)-spin models. Ann. Probab. 42(3), 946–958 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Peretto, P., Niez, J.J.: Long term memory storage capacity of multiconnected neural networks. Biol. Cybern. 54(1), 53–63 (1986)

    Article  MATH  Google Scholar 

  44. Rizzo, T.: Chaos in mean-field spin-glass models. In: Spin glasses: statics and dynamics, volume 62 of Progr. Probab. pp. 143–157. Birkhäuser Verlag, Basel (2009)

  45. Subag, E.: The complexity of spherical \(p\)-spin models—a second moment approach. ArXiv e-prints, April (2015)

  46. Subag, E.: The geometry of the Gibbs measure of pure spherical spin glasses. ArXiv e-prints, April (2016)

  47. Subag, E., Zeitouni, O.: The extremal process of critical points of the pure \(p\)-spin spherical spin glass model. ArXiv e-prints, September (2015)

  48. Talagrand, M.: The Parisi formula. Ann. Math. (2) 163(1), 221–263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Tyrrell Rockafellar, R.: Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ. Reprint of the 1970 original, Princeton Paperbacks (1997)

Download references

Acknowledgements

The authors are indebted to N. Krylov and M. Safonov for illuminating discussions on the regularity properties of the Parisi PDE. They thank S. Chatterjee, D. Panchenko, and the anonymous referees for a number of suggestions regarding the presentation of the paper. The research of W.-K. C. is partially supported by NSF Grant DMS-16-42207 and Hong Kong Research Grants Council GRF-14-302515. The research of M. H. and G. L. is partially supported by NSF Grant DMS-14-18386.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Kuo Chen.

Appendix

Appendix

This appendix is devoted to establishing Proposition 2. We prove a priori estimate first:

Lemma 10

Let \(0<r_0<r_1<r_2<\infty .\) Suppose that \(\kappa _1,\kappa _2\in L^\infty ([r_0 ,r_2]\times \mathbb {R})\) and \(g\in L^\infty (\mathbb {R})\) with \(\Vert \kappa _i\Vert _\infty \le C_i\) for \(i=1,2\) and \(\Vert g\Vert _\infty \le C_0\). Assume that u is the classical solution to

$$\begin{aligned} \partial _ru(r,x)=\partial _{xx}u(r,x)+\kappa _1(r,x)\partial _xu(r,x)+k_2(r,x),\,\,\forall (r,x)\in (r_0 ,{r_2} ]\times \mathbb {R} \end{aligned}$$

with initial condition \(u(r_0 ,x)=g(x).\) If

$$\begin{aligned} r\mapsto \Vert \partial _xu(r,\cdot )\Vert _\infty \end{aligned}$$

is continuous on \([r_0 ,{r_2} ]\), then there exists a nonnegative continuous function F on \([0,\infty )^3\) depending only on \(r_0 ,r_2\) such that

$$\begin{aligned} \sup _{(r,x)\in [r_1 ,r_2]\times \mathbb {R}}|\partial _xu(r,x)|&\le F(C_0,C_1,C_2). \end{aligned}$$

Proof

From the Duhamel principle,

$$\begin{aligned} u(r,x)&=P_{r-r_0 }g(x)+\int _{r_0 }^rP_{r-w}(\kappa _1(w,\cdot )\partial _xu(w,\cdot )+\kappa _2(w,\cdot ))(x)dw, \end{aligned}$$

where for any \(f\in L^\infty (\mathbb {R})\),

$$\begin{aligned} P_{a}f(x)\,{:=}\,\frac{1}{\sqrt{4\pi a}}\int _{\mathbb {R}}f(y)e^{-\frac{(x-y)^2}{4a}}dy. \end{aligned}$$

A direct computation leads to

$$\begin{aligned} \partial _xu(r,x)&=\partial _x(P_{r-r_0 }g(x))+\int _{r_0 }^r\partial _x\bigl (P_{r-w}(\kappa _1(w,\cdot )\partial _xu(w,\cdot )+\kappa _2(w,\cdot ))(x)\bigr )dw. \end{aligned}$$

Note that

$$\begin{aligned} \partial _x(P_{r-r_0 }g(x))&=\frac{-1}{2(r-r_0 )\sqrt{4\pi (r-r_0 )}}\int _{\mathbb {R}}(x-y)g(y)e^{-\frac{(x-y)^2}{4(r-r_0 )}}dy, \end{aligned}$$

from which

$$\begin{aligned} |\partial _x(P_{r-r_0 }g(x))|&\le \frac{C_0}{2(r-r_0 )\sqrt{4\pi (r-r_0 )}}\int _{\mathbb {R}}|x-y|e^{-\frac{(x-y)^2}{4(r-r_0 )}}dy=\frac{C_0}{\sqrt{\pi (r-r_0 ) }}. \end{aligned}$$

A similar computation also yields that

$$\begin{aligned} \int _{r_0 }^r\partial _x\bigl (P_{r-w}(\kappa _1(w,\cdot )\partial _xu(w,\cdot )+\kappa _2(w,\cdot ))(x)\bigr )dw&\le \int _{r_0 }^r\frac{C_1\Vert \partial _xu(w,\cdot )\Vert _\infty +C_2}{\sqrt{\pi (r-w)}} dw. \end{aligned}$$

As a result,

$$\begin{aligned} \Vert \partial _xu(r,\cdot )\Vert _\infty&\le \phi _0(r)+C_1\int _{r_0 }^r\frac{\Vert \partial _xu(w,\cdot )\Vert _\infty }{\sqrt{\pi (r-w)}} dw, \end{aligned}$$

where

$$\begin{aligned} \phi _0(r):=\frac{C_0}{\sqrt{\pi (r-r_0 )}}+\frac{2C_2\sqrt{r-r_0 }}{\sqrt{\pi }}. \end{aligned}$$

From the Gronwall inequality,

$$\begin{aligned} \Vert \partial _xu(r,\cdot )\Vert _\infty&\le \phi _0(r)+\int _{r_0 }^r\frac{C_1\phi _0(w)}{\sqrt{\pi (r-w)}}\exp \Bigl (\int _{w}^r\frac{dl}{\sqrt{\pi (r-l)}}\Bigr )dw\\&=\phi _0(r)+\int _{r_0 }^r\frac{C_1\phi _0(w)}{\sqrt{\pi (r-w)}}\exp \Bigl (2\sqrt{\frac{r-w}{\pi }}\Bigr )dw\\&\le \phi (r), \end{aligned}$$

where

$$\begin{aligned} \phi (r):=\phi _0(r)+\frac{C_1}{\pi }\exp \Bigl (2\sqrt{\frac{r_2-r_0 }{\pi }}\Bigr )\bigl (\pi C_0+4C_2\sqrt{r_2-r_0 }\bigr ), \end{aligned}$$

and the last inequality was obtained by using \(\int _{r_0 }^r1/\sqrt{(r-w)(w-r_0 )}dw =\pi .\) This finishes our proof. \(\square \)

With the help of Lemma 10, we obtain some controls on the spacial derivatives of \(\Phi _\gamma .\)

Lemma 11

Let \(s_1\in (0,1)\). For any \(\gamma \in \mathcal {U}_d,\)

$$\begin{aligned} \sup _{(s,x)\in [0,1)\times \mathbb {R}}|\partial _x\Phi _\gamma (s,x)|\le 1 \end{aligned}$$
(62)

and for \(k\ge 2\)

$$\begin{aligned} \sup _{(s,x)\in [0,s_1]\times \mathbb {R}}|\partial _x^k\Phi _\gamma (s,x)|\le F_k(\gamma (s_1)), \end{aligned}$$
(63)

where \(F_k\) is nonnegative continuous on \([0,\infty )\) depending on \(s_1\) only and independent of \(\gamma .\)

Proof

Assume that \(\gamma \in \mathcal {U}_d.\) One can explicitly solve \(\Phi _\gamma \) in the classical sense by performing the Cole-Hopf transformation. In fact, if \(\gamma =\sum _{i=0}^{m}a_i1_{[q_{i},q_{i+1})}\) for some sequences

$$\begin{aligned}&0=q_0<q_1<\cdots<q_m<q_{m+1}=1,\\&0\le a_0\le a_1\le \cdots \le a_{m-1}\le a_{m}<\infty , \end{aligned}$$

then for any \(1\le i\le m,\)

$$\begin{aligned} \Phi _{\gamma }(s,x)&=\frac{1}{a_i}\log \mathbb {E}\exp a_i\Phi _\gamma (q_{i+1},x+z\sqrt{\xi '(q_{i+1})-\xi '(s)}) \end{aligned}$$

for all \((s,x)\in [q_i,q_{i+1})\times \mathbb {R},\) where z is a standard normal random variable. Using the initial condition \(\Phi _\gamma (1,x)=|x|\) and an iteration argument, it can be easily checked that for any \(k\ge 0\), \(\partial _x^k\Phi \in C([0,1)\times \mathbb {R})\) and for any \(k\ge 0\) and \(s_0\in (0,1)\), \(\partial _s\partial _x^k\Phi (s,\cdot ) \in C(\mathbb {R})\). Furthermore, it can be verified that (62) holds, and for any \(s_0\in (0,1)\), there exists a constant C such that

$$\begin{aligned} \sup _{x\in \mathbb {R}}|\partial _{x}^k\Phi _\gamma (s,x)-\partial _x^k\Phi _\gamma (s',x)|\le C|s-s'|,\,\,\forall s,s'\in [0,1),\,x\in \mathbb {R},\,\,k\ge 2. \end{aligned}$$

This inequality implies that \(s\mapsto \Vert \partial _x^k\Phi _\gamma (s,\cdot )\Vert _\infty \) is a continuous function for \(s\in [0,1).\) Now define \(\zeta (s)=(\xi '(1)-\xi '(s))/2\). Fix \(0<s_1<s_0<1\). Set \(r_0=\zeta (s_0)\), \(r_1=\zeta (s_1)\), and \(r_2=\zeta (0)\). Evidently, the function \(u(r,x):=\partial _{x}\Phi _\gamma (\zeta ^{-1}(r),x)\) satisfies

$$\begin{aligned} \partial _ru(r,x)&=\partial _{xx}u(r,x)+\kappa _1(r,x)\partial _xu(r,x)+\kappa _2(r,x) \end{aligned}$$

for \((r,x)\in [r_0,r_2]\times \mathbb {R}\) with initial condition \(\partial _xu(r_0,x)=\partial _x\Psi _\gamma (\zeta ^{-1}(r_0),x),\) where

$$\begin{aligned} \kappa _1(r,x)&:=\gamma (\zeta ^{-1}(r))\partial _xu(r,x),\\ \kappa _2(r,x)&:=0. \end{aligned}$$

Since \(\Vert \kappa _1\Vert _\infty \le \gamma (\zeta ^{-1}(r_0))<\infty \), we can apply Lemma 10 to get that

$$\begin{aligned} \sup _{(s,x)\in [0,s_1]\times \mathbb {R}}|\partial _x\Phi _\gamma (s,x)|&=\sup _{(r,x)\in [r_1,r_2]\times \mathbb {R}}|\partial _xu(r,x)|\\&\le F(1,\gamma (\zeta ^{-1}(r_1)),0)\\&= F(1,\gamma (s_1),0), \end{aligned}$$

where F is a nonnegative continuous function on \([0,\infty )^3\) depending only on \(s_1.\) Letting \(F_1(y)=F(1,y,0)\) gives (63) with \(k=1.\) For \(k\ge 2,\) note that

$$\begin{aligned}&\partial _t\bigl (\partial _x^k\Phi _\gamma (s,x)\bigr )\\ {}&\quad =-\frac{\xi ''(s)}{2}\Bigl (\partial _{xx}\bigl (\partial _x^k\Phi _\gamma (s,x)\bigr )+2\gamma (s)\partial _x\Phi _\gamma (s,x)\bigl (\partial _x^{k+1}\Phi _\gamma (s,x)\bigr ) +K(s,x)\Bigr ), \end{aligned}$$

where K(sx) is the sum of products of spatial derivatives of \(\Phi _\gamma \) of order at most k. One may use a similar argument as the case \(k=1\) together with an induction procedure to obtain the proof of (63) for all \(k\ge 2\). \(\square \)

Following a similar definition of the weak solution for the original Parisi PDE in Jagannath and Tobasco [33], we define the weak solution of the Parisi PDE (5) as follows.

Definition 1

(Weak solution) Let \(\gamma \in \mathcal {U}.\) Let \(\Phi \) be a continuous function on \([0,1]\times \mathbb {R}\) with essentially bounded weak derivative \(\partial _x\Phi .\) We say that \(\Phi \) is a weak solution to

$$\begin{aligned} \partial _s\Phi (s,x)&=-\frac{\xi ''(s)}{2}\bigl (\partial _{xx}\Phi (s,x)+\gamma (s)\bigl (\partial _x\Phi (s,x)\bigr )^2\bigr ) \end{aligned}$$

on \([0,1)\times \mathbb {R}\) with \(\Phi (1,x)=|x|\) if

$$\begin{aligned} \int _0^1\int _{\mathbb {R}}\Bigl (-\Phi \partial _s \phi +\frac{\xi ''(s)}{2}\Bigl (\Phi \partial _{xx}\phi +\gamma (s)\bigl (\partial _{x}\Phi \bigr )^2\phi \Bigr )\Bigr )dxds+\int _{\mathbb {R}}\phi (1,x)|x|dx=0 \end{aligned}$$

for all smooth \(\phi \) on \((0,1]\times \mathbb {R}\) with compact support.

Proof of Proposition 2

Let us pick any \((\gamma _n)_n\subset \mathcal {U}_d\) with weak limit \(\gamma .\) From the estimates in Lemma 11, one readily sees that for any \(k\ge 0,\) the sequence \((\partial _x^k\Phi _{\gamma _n})_{n\ge 1}\) is equicontinuous and uniformly bounded on \([0,s_1)\times \mathbb {R}\) for all \(s_1\in (0,1)\). Thus, from the Arzela–Ascoli theorem combined with a diagonal process, on any \([0,s_1]\times [-M,M],\) \((\partial _x^k\Phi _{\gamma _n})_{n\ge 1}\) converges uniformly on any compact subset of \([0,1)\times \mathbb {R}\) for any \(k\ge 0\). Here, without loss of generality, we use the same sequence \((\gamma _n)_{n\ge 1}\) instead of adapting a subsequence for notational convenience. The above discussion makes the following well-defined,

$$\begin{aligned} \Phi _{\gamma }(s,x):=\lim _{n\rightarrow \infty }\Phi _{\gamma _n}(s,x) \end{aligned}$$

for \((s,x)\in [0,1]\times \mathbb {R}.\) Note that for \(s\in [0,1)\), \(\Phi _{\gamma }(s,x)\) is differentiable in \(x\in \mathbb {R}\) and satisfies \(\Vert \partial _x\Phi _\gamma (s,\cdot )\Vert _\infty <\infty \). Since \(\Phi _{\gamma _n}\) satisfies

$$\begin{aligned} \partial _s\Phi _{\gamma _n}(s,x)&=-\frac{\xi ''(s)}{2}\bigl (\partial _{xx}\Phi _{\gamma _n}(s,x)+\gamma _n(s)\bigl (\partial _x\Phi _{\gamma _n}(s,x)\bigr )^2\bigr ) \end{aligned}$$

for \((s,x)\in [0,1)\times \mathbb {R}\) with boundary condition \(\Phi _{\gamma _n}(1,x)=|x|,\) passing to the limit gives

$$\begin{aligned} \int _0^1\int _{\mathbb {R}}\Bigl (-\Phi _{\gamma }\partial _s \phi +\frac{\xi ''(s)}{2}\Bigl (\Phi _{\gamma }\partial _{xx}\phi +\gamma (s)\bigl (\partial _{x}\Phi _\gamma \bigr )^2\phi \Bigr )\Bigr )dxds+\int _{\mathbb {R}}\phi (1,x)|x|dx=0 \end{aligned}$$

for all smooth functions \(\phi \) on \((0,1]\times \mathbb {R}\) with compact support. Therefore, \(\Phi _\gamma \) exists in the weak sense and the fact that it satisfies the Lipschitz property (7) follows by applying (9) and noting that |x| has Lipschitz constant 1. Note that this Lipschitz property also implies that the definition of \(\Phi _\gamma \) is independent of the choice of the sequence \((\gamma _n)_{n\ge 1}\). To see the uniqueness of \(\Phi _\gamma \), it can be obtained via a fixed point argument identical to [33, Lemma 13]. These together give (i). The above discussion and Lemma 11 imply (ii). Since one can also pick this sequence \((\gamma _n)\) from \(\mathcal {U}_c\) and perform a similar procedure as above, we also obtain (iii). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WK., Handschy, M. & Lerman, G. On the energy landscape of the mixed even p-spin model. Probab. Theory Relat. Fields 171, 53–95 (2018). https://doi.org/10.1007/s00440-017-0773-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0773-1

Keywords

Mathematics Subject Classification

Navigation