Skip to main content
Log in

Efficient nonparametric inference for discretely observed compound Poisson processes

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

A compound Poisson process whose parameters are all unknown is observed at finitely many equispaced times. Nonparametric estimators of the jump and Lévy distributions are proposed and functional central limit theorems using the uniform norm are proved for both under mild conditions. The limiting Gaussian processes are identified and efficiency of the estimators is established. Kernel estimators for the mass function, the intensity and the drift are also proposed, their asymptotic properties including efficiency are analysed, and joint asymptotic normality is shown. Inference tools such as confidence regions and tests are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. In personal communication with M. Trabs, it was confirmed that the function \({{\mathrm{\mathbbm {1}}}}_{(-\infty ,t]}\) in Corollary 4.5 in [35] should be \(f^{(N)}_t\) for their results to be correct, and \(\tilde{\chi }_\nu \), defined after the corollary, should equal \(\lambda f_t^{(F)}\). We also confirmed the covariance of the limiting process in the general case considered in [5] does not coincide with \(\varSigma _{s,t}^{F}\).

References

  1. Belomestny, D., Comte, F., Genon-Catalot, V., Masuda, H., Reiß, M.: Lévy Matters IV. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  2. Belomestny, D., Reiß, M.: Spectral calibration for exponential Lévy models. Finance Stoch. 10(4), 449–474 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bøgsted, M., Pitts, S.M.: Decompounding random sums: a nonparametric approach. Ann. I. Stat. Math. 62(5), 855–872 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buchmann, B.: Weighted empirical processes in the nonparametric inference for Lévy processes. Math. Methods Stat. 18(4), 281–309 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchmann, B., Grübel, R.: Decompounding: an estimation problem for Poisson random sums. Ann. Stat. 31(4), 1054–1074 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buchmann, B., Grübel, R.: Decompounding Poisson random sums: recursively truncated estimates in the discrete case. Ann. I. Stat. Math. 56(4), 743–756 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, S., Delaigle, A., Hall, P.: Nonparametric estimation for a class of Lévy processes. J. Econ. 157(2), 257–271 (2010)

    Article  MATH  Google Scholar 

  8. Chung, K.L.: A Course in Probability Theory. Academic Press, New York (2001)

    Google Scholar 

  9. Coca, A. J.: Efficient nonparametric inference for discretely observed compound Poisson processes. PhD thesis, University of Cambridge. https://albertococacabrero.wordpress.com/research/ (2016). Accessed 27 Jan 2017

  10. Comte, F., Duval, C., Genon-Catalot, V.: Nonparametric density estimation in compound Poisson process using convolution power estimators. Metrika 77(1), 163–183 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Comte, F., Duval, C., Genon-Catalot, V., Kappus, J.: Estimation of the jump size density in a mixed compound Poisson process. Scand. J. Stat. 42(4), 1023–1044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cont, R., Tankov, P.: Calibration of jump-diffusion option pricing models: a robust non-parametric approach. J. Comput. Finance 7(3), 1–49 (2004)

    Article  Google Scholar 

  13. Csörgő, S., Totik, V.: On how long interval is the empirical characteristic function uniformly consistent. Acta Sci. Math. 45, 141–149 (1983)

    MathSciNet  MATH  Google Scholar 

  14. Dudley, R.M.: Uniform Central Limit Theorems. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  15. Duval, C.: Density estimation for compound Poisson processes from discrete data. Stoch. Proc. Appl. 123(11), 3963–3986 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Duval, C.: Nonparametric estimation of a renewal reward process from discrete data. Math. Methods Stat. 22(1), 28–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duval, C.: When is it no longer possible to estimate a compound Poisson process? Electron. J. Stat. 8(1), 274–301 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Folland, G.B.: Real Analysis. Modern Techniques and Their Applications, 2nd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  19. Giné, E., Nickl, R.: Uniform central limit theorems for kernel density estimators. Probab. Theory Relat. 141, 333–387 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giné, E., Nickl, R.: Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  21. Giné, E., Zinn, J.: Some limit theorems for empirical processes. Ann. Probab. 12(4), 929–989 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gugushvili, S.: Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process. J. Nonparametr. Stat. 21(3), 321–343 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gugushvili, S.: Nonparametric inference for discretely sampled Lévy processes. Ann. I. H. Poincare-Pr. 48(1), 282–307 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gugushvili, S., van der Meulen, F., Spreij, P.: Nonparametric Bayesian inference for multidimensional compound Poisson processes. Mod. Stoch. Theory Appl. 2(1), 1–15 (2015)

  25. Gugushvili, S., van der Meulen, F., Spreij, P.: A non-parametric Bayesian approach to decompounding from high frequency data. Stat. Inference Stoch. Process. (2016). doi:10.1007/s11203-016-9153-1

  26. Kappus, J.: Adaptive nonparametric estimation for Lévy processes observed at low frequency. Stoch. Processes Their Appl. 124(1), 730–758 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Neumann, M.H., Reiß, M.: Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15(1), 223–248 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nickl, R., Reiß, M.: A Donsker theorem for Lévy measures. J. Funct. Anal. 263, 3306–3332 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nickl, R., Reiß, M., Söhl, J., Trabs, M.: High-frequency Donsker theorems for Lévy measures. Probab. Theory Relat. 164(1), 61–108 (2016)

    Article  MATH  Google Scholar 

  30. Reiß, M.: Testing the characteristics of a Lévy process. Stoch. Proc. Appl. 123(7), 2808–2828 (2013). (Special issue international year of statistics)

    Article  MATH  Google Scholar 

  31. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  32. Söhl, J.: Confidence sets in nonparametric calibration of exponential Lévy models. Finance Stoch. 18(3), 617–649 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Söhl, J., Trabs, M.: A uniform central limit theorem and efficiency for deconvolution estimators. Electron. J. Stat. 6, 2486–2518 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Söhl, J., Trabs, M.: Option calibration of exponential Lévy models: Confidence intervals and empirical results. J. Comput. Finance 18(2), 91–119 (2014)

    Article  Google Scholar 

  35. Trabs, M.: Information bounds for inverse problems with application to deconvolution and Lévy models. Ann. l. H. Poincare-Pr. 51(4), 1620–1650 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. van der Vaart, A.W.: Asymptotic Statistics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  37. van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes. Springer, New York (1996)

    Book  MATH  Google Scholar 

  38. van Es, B., Gugushvili, S., Spreij, P.: A kernel type nonparametric density estimator for decompounding. Bernoulli 13(3), 672–694 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yukich, J.E.: Weak convergence of the empirical characteristic function. Proc. Am. Math. Soc. 95(3), 470–473 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto J. Coca.

Additional information

The author is grateful to Richard Nickl for the numerous discussions leading to the completion of this work, to the anonymous referees for their insightful remarks and to Fundación “La Caixa”, EPSRC (Grant EP/H023348/1 for the Cambridge Centre for Analysis) and Fundación Mutua Madrileña for their generous support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coca, A.J. Efficient nonparametric inference for discretely observed compound Poisson processes. Probab. Theory Relat. Fields 170, 475–523 (2018). https://doi.org/10.1007/s00440-017-0761-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0761-5

Keywords

Mathematics Subject Classification

Navigation