Skip to main content
Log in

Local microscopic behavior for 2D Coulomb gases

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

The study of two-dimensional Coulomb gases lies at the interface of statistical physics and non-Hermitian random matrix theory. In this paper we give a large deviation principle (LDP) for the empirical fields obtained, under the canonical Gibbs measure, by zooming around a point in the bulk of the equilibrium measure, up to the finest averaging scale \(N^{-1/2 + \varepsilon }\). The rate function is given by the sum of the “renormalized energy” of Serfaty et al. weighted by the inverse temperature, and of the specific relative entropy. We deduce a local law which quantifies the convergence of the empirical measures of the particles to the equilibrium measure, up to the finest scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ameur, Y., Hedenmalm, H., Makarov, N.: Random normal matrices and Ward identities. Ann. Probab. 43(3), 1157–1201 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alastuey, A., Jancovici, B.: On the classical two-dimensional one-component Coulomb plasma. J. Phys. 42(1), 1–12 (1981)

    Article  MathSciNet  Google Scholar 

  3. Ben Arous, G., Zeitouni, O.: Large deviations from the circular law. ESAIM: Probab. Stat. 2, 123–134 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bauerschmidt, R., Bourgade, P., Nikula, M., Yau, H.-T.: Local density for two-dimensional one-component plasma. arXiv:1510.02074 (2015)

  5. Bourgade, P., Erdős, L., Yau, H.-T.: Bulk universality of general \(\beta \)-ensembles with non-convex potential. J. Math. Phys. 53(9), 095221–0952219 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bourgade, P., Erdős, L., Yau, H.-T.: Universality of general \(\beta \)-ensembles. Duke Math. J. 163(6), 1127–1190 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blanc, X., Lewin, M.: The crystallization conjecture: a review. arXiv:1504.01153 (2015)

  8. Bourgade, P., Yau, H.-T., Yin, J.: Local circular law for random matrices. Probab. Theory Relat. Fields 159(3–4), 545–595 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bourgade, P., Yau, H.-T., Yin, J.: The local circular law II: the edge case. Probab. Theory Relat. Fields 159(3–4), 619–660 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830–5847 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dembo, A., Zeitouni, O.: Large deviations techniques and applications. In: Stochastic Modelling and Applied Probability, vol. 38. Springer, Berlin (2010) (corrected reprint of the second edition, 1998)

  12. Follmer, H., Orey, S.: Large deviations for the empirical field of a Gibbs measure. Ann. Probab. 961–977 (1988)

  13. Forrester, P.J.: Log-gases and random matrices. In: London Mathematical Society Monographs Series, vol. 34. Princeton University Press, Princeton (2010)

  14. Frostman, O.: Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions. Medd. Mat. Sem. Univ. Lund 3, 115s (1935)

  15. Georgii, H.-O.: Large deviations and maximum entropy principle for interacting random fields on zd. Ann. Probab. 1845–1875 (1993)

  16. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  17. Georgii, H.-O., Zessin, H.: Large deviations and the maximum entropy principle for marked point random fields. Probab. Theory Relat. Fields 96(2), 177–204 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hardy, A.: A note on large deviations for 2D Coulomb gas with weakly confining potential. Electron. Commun. Probab. 17(19), 12 (2012)

  19. Jancovici, B., Lebowitz, J., Manificat, G.: Large charge fluctuations in classical Coulomb systems. J. Stat. Phys. 72(3–4), 773–777 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  20. Leblé, T.: Logarithmic, Coulomb and Riesz energy of point processes. arXiv:1509.05253 (2015)

  21. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of Log and Riesz gases. arXiv:1502.02970 (2015)

  22. Leblé, T., Serfaty, S.: Fluctuations of two-dimensional Coulomb gases. arXiv:1609.08088 (2016)

  23. Olla, S.: Large deviations for Gibbs random fields. Probab. Theory Relat. Fields 77(3), 343–357 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Petz, D., Hiai, F.: Logarithmic energy as an entropy functional. Contemp. Math. 217, 205–221 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu First View 1–69, 5 (2015)

  26. Rassoul-Agha, F., Seppäläinen, T.: A course on large deviation theory with an introduction to Gibbs measures. In: Graduate Studies in Mathematics, vol. 162. American Mathematical Society, New York (2015 edn) (2009)

  27. Rota Nodari, S., Serfaty, S.: Renormalized energy equidistribution and local charge balance in 2D Coulomb systems. Int. Math. Res. Not. IMRN (11), 3035–3093 (2015)

  28. Rougerie, N., Serfaty, S.: Higher-dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. (2015)

  29. Serfaty, S.: Coulomb gases and Ginzburg–Landau vortices. In: Zurich Lecture Notes in Mathematics (2015)

  30. Sari, R., Merlini, D.: On the \(\nu \)-dimensional one-component classical plasma: the thermodynamic limit problem revisited. J. Stat. Phys. 14(2), 91–100 (1976)

    Article  MathSciNet  Google Scholar 

  31. Sandier, E., Serfaty, S.: From the Ginzburg–Landau model to vortex lattice problems. Commun. Math. Phys. 313, 635–743 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sandier, E., Serfaty, S.: 1D log gases and the renormalized energy: crystallization at vanishing temperature. Probab. Theory Relat. Fields 162(3–4), 795–846 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  34. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Grundlehren der mathematischen Wissenchaften, vol. 316. Springer, Berlin (1997)

  35. Tao, T., Vu, V.: Random matrices: universality of local spectral statistics of non-Hermitian matrices. Ann. Probab. 43(2), 782–874 (2015)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank his Ph.D. supervisor, Sylvia Serfaty, for helpful comments on this work, as well as the anonymous referees for many useful corrections and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Leblé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leblé, T. Local microscopic behavior for 2D Coulomb gases. Probab. Theory Relat. Fields 169, 931–976 (2017). https://doi.org/10.1007/s00440-016-0744-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0744-y

Mathematics Subject Classification

Navigation