Skip to main content
Log in

Indistinguishability of trees in uniform spanning forests

Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We prove that in both the free and the wired uniform spanning forest (FUSF and WUSF) of any unimodular random rooted network (in particular, of any Cayley graph), it is impossible to distinguish the connected components of the forest from each other by invariantly defined graph properties almost surely. This confirms a conjecture of Benjamini et al. (Ann Probab 29(1):1–65, 2001). We also answer positively two additional questions of Benjamini et al. (Ann Probab 29(1):1–65, 2001) under the assumption of unimodularity. We prove that on any unimodular random rooted network, the FUSF is either connected or has infinitely many connected components almost surely, and, if the FUSF and WUSF are distinct, then every component of the FUSF is transient and infinitely-ended almost surely. All of these results are new even for Cayley graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Aizenman, M., Warzel, S.: The canopy graph and level statistics for random operators on trees. Math. Phys. Anal. Geom. 9(4), 291–333 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Angel, O., Hutchcroft, T., Nachmias, A., Ray, G.: A dichotomy for random planar maps, (2016) (in preparation)

  4. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Group-invariant percolation on graphs. Geom. Funct. Anal. 9(1), 29–66 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benjamini, I., Paquette, E., Pfeffer, J.: Anchored expansion, speed, and the hyperbolic Poisson Voronoi tessellation (2014) (arXiv e-prints)

  6. Benjamini, I., Curien, N.: Ergodic theory on stationary random graphs. Electron. J. Probab 17(93), 20 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Benjamini, I., Kesten, H., Peres, Y., Schramm, O.: Geometry of the uniform spanning forest: transitions in dimensions \(4,8,12,\dots \). Ann. Math. 160(2), 465–491 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benjamini, I., Lyons, R., Peres, Y., Schramm, O.: Uniform spanning forests. Ann. Probab. 29(1), 1–65 (2001)

    MathSciNet  MATH  Google Scholar 

  9. Burton, R., Pemantle, R.: Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances. Ann. Probab. 21(3), 1329–1371 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Curien, N.: Planar stochastic hyperbolic infinite triangulations (2014). arXiv:1401.3297

  11. Epstein, I., Monod, N.: Nonunitarizable representations and random forests. Int. Math. Res. Not. IMRN 22, 4336–4353 (2009)

  12. Gaboriau, D.: Invariant percolation and harmonic Dirichlet functions. Geom. Funct. Anal. 15(5), 1004–1051 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gaboriau, D.: What is \(\ldots \) cost? Not. Am. Math. Soc. 57(10), 1295–1296 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Gaboriau, D., Lyons, R.: A measurable-group-theoretic solution to von Neumann’s problem. Invent. Math. 177(3), 533–540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grimmett, G.: The random-cluster model, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 333. Springer, Berlin (2006)

    Google Scholar 

  16. Häggström, O.: Random-cluster measures and uniform spanning trees. Stoch. Process. Appl. 59(2), 267–275 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hebisch, W., Saloff-Coste, L.: Gaussian estimates for Markov chains and random walks on groups. Ann. Probab. 21(2), 673–709 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Holroyd, A.E., Levine, L., Mészáros, K., Peres, Y., Propp, J., Wilson, D.B.: Chip-firing and rotor-routing on directed graphs, in and out of equilibrium. Progr. Probab., vol. 60, pp. 331–364. Birkhäuser, Basel (2008)

  19. Hutchcroft, T.: Wired cycle-breaking dynamics for uniform spanning forests. arXiv:1504.03928

  20. Járai, A.A., Redig, F.: Infinite volume limit of the abelian sandpile model in dimensions \(d\ge 3\). Probab. Theory Related Fields 141(1–2), 181–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Járai, A.A., Werning, N.: Minimal configurations and sandpile measures. J. Theoret. Probab. 27(1), 153–167 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kenyon, R.: The asymptotic determinant of the discrete Laplacian. Acta Math. 185(2), 239–286 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kirchhoff, G.: Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys. und Chem. 72, 497–508 (1847)

  24. Lawler, G.F.: A self-avoiding random walk. Duke Math. J. 47(3), 655–693 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lyons, R., Peres, Y.: Probability on trees and networks. Cambridge University Press, Cambridge (2015) (current version available at http://mypage.iu.edu/~rdlyons/) (in preparation)

  26. Lyons, R.: Random complexes and \(l^2\)-Betti numbers. J. Topol. Anal. 1(2), 153–175 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lyons, R., Morris, B.J., Schramm, O.: Ends in uniform spanning forests. Electron. J. Probab. 13(58), 1702–1725 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lyons, R., Schramm, O.: Indistinguishability of percolation clusters. Ann. Probab. 27(4), 1809–1836 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Majumdar, S.N., Dhar, D.: Equivalence between the abelian sandpile model and the \(q \rightarrow 0\) limit of the potts model. Phys. A 185, 129–145 (1992)

  30. Morris, B.: The components of the wired spanning forest are recurrent. Probab. Theory Related Fields 125(2), 259–265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pemantle, R.: Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19(4), 1559–1574 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  32. Propp, J.G., Wilson, D.B.: How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms 27(2), 170–217 (1998) [7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996)]

  33. Timár, A.: Indistinguishability of components of random spanning forests. arXiv:1506.01370

  34. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing, pp. 296–303 (Philadelphia, PA, 1996). ACM, New York (1996)

Download references

Acknowledgments

We are grateful to Russ Lyons for many comments, corrections and improvements to the manuscript, and also to Ander Holroyd and Yuval Peres for useful discussions. TH thanks Tel Aviv University and both authors thank the Issac Newton Institute, where part of this work was carried out, for their hospitality. This Project is supported by NSERC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Hutchcroft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutchcroft, T., Nachmias, A. Indistinguishability of trees in uniform spanning forests. Probab. Theory Relat. Fields 168, 113–152 (2017). https://doi.org/10.1007/s00440-016-0707-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-016-0707-3

Mathematics Subject Classification

Navigation