Skip to main content
Log in

Random geometric complexes in the thermodynamic regime

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We consider the topology of simplicial complexes with vertices the points of a random point process and faces determined by distance relationships between the vertices. In particular, we study the Betti numbers of these complexes as the number of vertices becomes large, obtaining limit theorems for means, strong laws, concentration inequalities and central limit theorems. As opposed to most prior papers treating random complexes, the limit with which we work is in the so-called ‘thermodynamic’ regime (which includes the percolation threshold) in which the complexes become very large and complicated, with complex homology characterised by diverging Betti numbers. The proofs combine probabilistic arguments from the theory of stabilizing functionals of point processes and topological arguments exploiting the properties of Mayer–Vietoris exact sequences. The Mayer–Vietoris arguments are crucial, since homology in general, and Betti numbers in particular, are global rather than local phenomena, and most standard probabilistic arguments are based on the additivity of functionals arising as a consequence of locality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The \(\tilde{H}_k\) are the reduced homology groups and it suffices to note that \(\tilde{H}_k \cong H_k\) for \(k \ne 0\) and \(H_0 \cong \tilde{H}_0 \oplus {\mathbb {F}}\).

References

  1. Akcoglu, M.A., Krengel, U.: Ergodic theorems for superadditive processes. J. Reine Angew. Math. 323, 53–67 (1981)

    MathSciNet  MATH  Google Scholar 

  2. Björner, A.: Topological methods. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, vol. 2, pp. 1819–1872. Elsevier, Amsterdam (1995)

  3. Bobrowski, O., Adler, R.J.: Distance functions, critical points, and the topology of random Čech complexes. Homol. Homotopy Appl. 16(2), 311–344 (2014)

    Article  MATH  Google Scholar 

  4. Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey (2014). arXiv:1409.4734

  5. Bobrowski, O., Mukherjee, S.: The topology of probability distributions on manifolds. Probab. Theory Relat. Fields 161(3–4), 651–686 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. (N.S.) 46(2), 255–308 (2009)

  7. Carlsson, G.: Topological pattern recognition for point cloud data. Acta Numer. 23, 289–368 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chalker, T.K., Godbole, A.P., Hitczenko, P., Radcliff, J., Ruehr, O.G.: On the size of a random sphere of influence graph. Adv. Appl. Probab. 31(3), 596–609 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Costa, A.E., Farber, M., Kappeler, T.: Topics of stochastic algebraic topology. In: Proceedings of the Workshop on Geometric and Topological Methods in Computer Science (GETCO). Electronic Notes in Theoretical Computer Science, vol. 283(0), pp. 53–70 (2012)

  10. Decreusefond, L., Ferraz, E., Randriam, H., Vergne, A.: Simplicial homology of random configurations. Adv. Appl. Probab. 46, 1–20 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delfinado, C.J.A., Edelsbrunner, H.: An incremental algorithm for Betti numbers of simplicial complexes. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, SCG ’93, New York, NY, USA, pp. 232–239. ACM (1993)

  12. Edelsbrunner, H., Harer, J.L.: Computational Topology, An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  13. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9(3), 586–596 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Forman, R.: A user’s guide to discrete Morse theory. Sém. Lothar. Comb. 48, (2002)

  15. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. (N.S.) 45(1), 61–75 (2008)

  16. Hall, P.: Introduction to the theory of coverage processes. In: Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1988)

  17. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  18. Hug, D., Last, G., Schulte, M.: Second order properties and central limit theorems for geometric functionals of Boolean models. Ann. Appl. Probab. (2013) (to appear). arXiv:1308.6519

  19. Kahle, M.: Random geometric complexes. Discret. Comput. Geom. 45(3), 553–573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kahle, M.: Topology of random simplicial complexes: a survey. In: Tillmann, U., Galatius, S., Sinha, D. (eds.) Algebraic Topology: Applications and New Directions. Contemporary Mathematics, vol. 620, pp. 201–221. American Mathematical Society, Providence (2014)

  21. Kahle, M., Meckes, E.: Limit theorems for Betti numbers of random simplicial complexes. Homol. Homotopy Appl. 15(1), 343–374 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Last, G., Penrose, M.D.: Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Relat. Fields 150(3–4), 663–690 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Last, G., Peccatti, G., Schulte, M.: Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequality and stabilization. Probab. Theory Relat. Fields 1–57 (2015). doi:10.1007/s00440-015-0643-7

  24. Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meester, R., Roy, R.: Continuum Percolation. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  26. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)

  27. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discret. Comput. Geom. 39(1–3), 419–441 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Niyogi, P., Smale, S., Weinberger, S.: A topological view of unsupervised learning from noisy data. SIAM J. Comput. 40(3), 646–663 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nourdin, I., Peccati, G.: Normal approximations with Malliavin calculus. In: Cambridge Tracts in Mathematics, vol. 192. Cambridge University Press, Cambridge (2012). From Stein’s method to universality

  30. Pemantle, R., Peres, Y.: Concentration of Lipschitz functionals of determinantal and other strong Rayleigh measures. Combin. Probab. Comput. 23, 140–160 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Penrose, M.D.: Random Geometric Graphs. Oxford University Press, New York (2003)

    Book  MATH  Google Scholar 

  32. Penrose, M.D.: Laws of large numbers in stochastic geometry with statistical applications. Bernoulli 13(4), 1124–1150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Penrose, M.D., Yukich, J.E.: Central limit theorems for some graphs in computational geometry. Ann. Appl. Probab. 11(4), 1005–1041 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Sarkar, A.: Co-existence of the occupied and vacant phase in Boolean models in three or more dimensions. Adv. Appl. Probab. 29(4), 878–889 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Schneider, R., Weil, W.: Stochastic and integral geometry. In: Probability and its Applications (New York). Springer, Berlin (2008)

  36. Schulte, M.: Malliavin–Stein method in stochastic geometry. Ph.D. thesis (2013). http://repositorium.uni-osnabrueck.de/handle/urn:nbn:de:gbv:700-2013031910717

  37. Spanier, E.H.: Algebraic Topology. McGraw-Hill Book Co., New York (1966)

    MATH  Google Scholar 

  38. Steele, J.M.: An Efron-Stein inequality for nonsymmetric statistics. Ann. Stat. 14(2), 753–758 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Steele, J.M.: Probability theory and combinatorial optimization. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 69. SIAM, Philadelphia (1997)

  40. Stoyan, D., Kendall, W., Mecke, J.: Stochastic Geometry and its Applications. Wiley, Chichester (1995)

    MATH  Google Scholar 

  41. Tanemura, H.: Critical behavior for a continuum percolation model. In: Probability Theory and Mathematical Statistics (Tokyo, 1995), pp. 485–495. World Scientific Publishing, River Edge (1996)

  42. Yogeshwaran, D., Adler, R.J.: On the topology of random complexes built over stationary point processes. Ann. Appl. Probab. 25(6), 3338–3380 (2015)

  43. Yukich, J.E.: Probability theory of classical Euclidean optimization problems. Lecture Notes in Mathematics, vol. 1675. Springer, Berlin, Heidelberg (1998)

  44. Zomorodian, A.: Topological data analysis. In: Advances in Applied and Computational Topology. Proceedings of Symposia in Applied Mathematics, vol. 70, pp. 1–39. American Mathematical Society, Providence (2012)

  45. Zomorodian, A.J.: Topology for computing. Cambridge Monographs on Applied and Computational Mathematics, vol. 16. Cambridge University Press, Cambridge (2009)

Download references

Acknowledgments

The work has benefitted from discussions with various people. On the topology side, we are thankful to Antonio Rieser and Primoz Skraba. On the probability side, Joseph Yukich answered many questions about the literature on sub-additive and stabilizing functionals, while Mathias Schulte explained to DY the variance lower bound technique of Lemma 5.1. Thanks are also due to his co-authors Günter Last and Giovanni Peccatti for sharing their results with us in advance of publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yogeshwaran.

Additional information

D. Yogeshwaran’s research was supported in part by FP7-ICT-318493-STREP.

Eliran Subag’s research was supported in part by Israel Science Foundation, 853/10.

Robert J. Adler’s research was supported in part by AFOSR FA8655-11-1-3039 and ERC 2012 Advanced Grant 20120216.

Appendices

Appendices

1.1 Appendix 1

The following useful lemma needed for variance lower bounds is essentially a simplification of [23, Theorem 5.2] to our situation.

Lemma 5.1

Let \(n \ge 1\) and \({\mathcal {P}}_n\) be the Poisson point process with density nf,  where f satisfies (4.1). Let F be a translation invariant functional on locally finite point sets of \({\mathbb {R}}^d\) such that \({\mathbb {E}}\left\{ F({\mathcal {P}}_n)^2\right\} < \infty \). Assume that there exist \(m \in {\mathbb {N}},\) a set \(A \subset \mathrm{{supp}}(f),\) a finite set of points \(z_1,\ldots , z_{m}\) and \(r > 0\) with \(A \oplus B_{z_i}(r) \subset \mathrm{{supp}}(f)\) for all \(i \in \{1,\ldots ,m\}\) such that for all \(x \in A \) and \((x_1,\ldots ,x_m) \in \prod _{i=1}^mB_{x+z_i}(r),\) we have that

$$\begin{aligned} \big |{\mathbb {E}}\left\{ D_x \big ( F({\mathcal {P}}_n \cup \{x_1\ldots ,x_m\}) \big )\right\} \big | \ge c, \end{aligned}$$
(5.1)

for some positive constant c. Then

$$\begin{aligned} \mathsf {VAR}\left( F({\mathcal {P}}_n)\right) \ge f^*n \frac{c^2(f_*(f^*)^{-1})^{m+1}}{8^{m+2}\cdot 4\cdot (m+1)!} \min _{j=1,\ldots ,m+1} 2^{-d(m+1-j)}(w_df^*nr^d)^{j-1}|A|.\nonumber \\ \end{aligned}$$
(5.2)

Proof

[23, Theorem 5.3] simplifies [23, Theorem 5.2] to the case of stationary Poisson point processes in Euclidean space. However, since we are dealing with Poisson point processes with non-uniform densities, we require a small change in the arguments there and shall describe this in a moment. In any case, the similarity of our lower bound (5.2) to that of [23, Theorem 5.3] is to be expected. In particular, if we set \(f_* = f^* = \lambda \), then (5.2) is exactly the variance lower bound in [23, Theorem 5.3] with t there replaced by \(\lambda n\) here (although the set A and r are different).

Now, more specifically, set

$$\begin{aligned} U = \left\{ (x,x+z_1+x_1,\ldots ,x+z_m+x_m) :\, x \in A, \ (x_1,\ldots ,x_m) \in \prod _{i=1}^mB_O(r) \right\} . \end{aligned}$$

Note that this plays the role of U as defined in [23, Theorem 5.2] and defining g on U as

$$\begin{aligned} g(y_1,\ldots ,y_{m+1}) := \big |{\mathbb {E}}\left\{ F({\mathcal {P}}_n \cup \{y_1,y_2\ldots ,y_{m+1}\})\right\} - {\mathbb {E}}\left\{ F({\mathcal {P}}_n \cup \{y_2,\ldots ,y_{m+1}\})\right\} \big |, \end{aligned}$$

we have that \(g > c/2\) Lebesgue a.e. on U. Setting \(\nu _n(.)\) to be the intensity measure of the point process \({\mathcal {P}}_n\), we have that

$$\begin{aligned} f_*|.| \le \nu _n(.) \le f^* |. |, \end{aligned}$$

where we recall that |.| stands for the Lebesgue measure on \({\mathbb {R}}^d\). Using these bounds for \(\nu _n(.)\), we firstly obtain that

$$\begin{aligned} \nu _n^{m+1}(U) \ge nf_*^{m+1}|A|(nw_dr^d)^m. \end{aligned}$$

Secondly, let \(\emptyset \ne J \subset \{1,\ldots ,m+1\}\) and for \(y = (y_1,\ldots ,y_{m+1}) \in {\mathbb {R}}^{d(m+1)}\), let \(y_J\) be the components of y with indices in J. If \(y \in U\), then \(|y_i - y_j| \le 2r\) for all \(1 \le i,j \le m+1\) and so for any \(y_J \in {\mathbb {R}}^{d|J|}\), we have that

$$\begin{aligned} \nu ^{m+1-|J|}_n \big ( \{y_{J^c} \in {\mathbb {R}}^{d(m+1-|J|)} : y \in U \} \big ) \le (2^df^*nw_dr^d)^{m+1-|J|}. \end{aligned}$$

Using the above upper and lower bounds in the proof of [23, Theorem 5.3] along with the a.e. lower bound for g on U, (5.2) follows. \(\square \)

1.2 Appendix 2

We use the notation of Sect. 4.2, and consider a sequence \(\{B_n\}\) of subsets of \({\mathbb {R}}^d\) satisfying Conditions (A)–(D) there.

Given such a sequence, let \({\mathfrak {B}}\) (\(={\mathfrak {B}}(\{B_n\})\)) be the collection of all subsets A of \({\mathbb {R}}^d\) such that \(A = B_n + x\) for some \(B_n\) in the sequence and some point \(x \in {\mathbb {R}}^d\).

For a \(A \in {\mathfrak {B}}\), we shall denote by \({{\mathcal {U}}}_{m,A}\) the point process obtained by choosing m points uniformly in A. Then the extended binomial process \({{\mathcal {U}}}_n\) of Sect. 4.2 is equivalent to \({{\mathcal {U}}}_{n,B_n}\) in the current notation.

Theorem 5.2

[33, Theorem 2.1] Let H be a real-valued functional defined for all finite subsets of \({\mathbb {R}}^d\) and satisfying the following four conditions : 

  1. 1.

    Translation invariance: \(H({{\mathcal {X}}}+ y) = H({{\mathcal {X}}})\) for all finite subsets \({{\mathcal {X}}}\) and \(y \in {\mathbb {R}}^d\).

  2. 2.

    Strong stabilization: H is called strongly stabilizing if there exist a.s. finite random variables R (called the radius of stabilization for H) and \(D_H(\infty )\) such that,  with probability 1, 

    $$\begin{aligned} (D_OH)\big (({\mathcal {P}}\cap B_O(R)) \cup A\big )= D_H(\infty ) \end{aligned}$$

    for all finite \(A \subset B_O(R)^c\).

  3. 3.

    Uniformly bounded moments:

    $$\begin{aligned} \sup _{A \in {\mathfrak {B}} ; \, 0 \in A} \, \sup _{m \in \left[ {|A|}/{2},{3|A|}/{2}\right] }{\mathbb {E}}\left\{ \left[ (D_OH)({{\mathcal {U}}}_{m,A})\right] ^4\right\} <\infty . \end{aligned}$$
  4. 4.

    Polynomial boundedness: There is a constant \(b_2\) such that,  for all finite subsets \({{\mathcal {X}}}\subset {\mathbb {R}}^d,\)

    $$\begin{aligned} |H({{\mathcal {X}}})| \le b_2\left[ \mathrm{diam}({{\mathcal {X}}}) +| {{\mathcal {X}}}|\right] ^{b_2}. \end{aligned}$$
    (5.3)

Then,  there exist constants \(\sigma ^2,\tau ^2\) with \(0 \le \tau ^2 \le \sigma ^2,\) such that,  as \(n \rightarrow \infty ,\)

$$\begin{aligned}&n^{-1}\mathsf {VAR}\left( H({\mathcal {P}}\cap B_n)\right) \rightarrow \sigma ^2, \qquad n^{-1}\mathsf {VAR}\left( H({{\mathcal {U}}}_n)\right) \rightarrow \tau ^2 , \\&\quad n^{-1/2}\left[ H({\mathcal {P}}\cap B_n) - {\mathbb {E}}\left\{ H({\mathcal {P}}\cap B_n)\right\} \right] \ {\Rightarrow }\ N(0,\sigma ^2), \end{aligned}$$

and

$$\begin{aligned} n^{-1/2}\left[ H({{\mathcal {U}}}_n)) - {\mathbb {E}}\left\{ H({{\mathcal {U}}}_n)\right\} \right] \ {\Rightarrow }\ N(0,\tau ^2), \end{aligned}$$

where \(\Rightarrow \) denotes convergence in distribution. The constants \(\sigma ^2,\tau ^2\) are independent of the choice of \(B_n\). If \(D_H(\infty )\) is non-degenerate,  then \(\tau ^2 > 0\) and also \(\sigma ^2 > 0\). Further,  if \({\mathbb {E}}\left\{ D_H(\infty )\right\} \ne 0,\) then \(\tau ^2 < \sigma ^2\).

The last statement follows from the remark below [33, Theorem 2.1]. In the Poisson case the strongly stabilizing condition required for the central limit theorem can be replaced by the so-called weak stabilization condition, as in [33, Theorem 3.1]. H is said to be weakly stabilizing if there exists a random variable \(D_{\infty }(H)\) such that

$$\begin{aligned} (D_OH)({\mathcal {P}}\cap A_n)\ \mathop {\rightarrow }\limits ^{a.s. }\ D_{\infty }(H), \end{aligned}$$
(5.4)

for any \({\mathfrak {B}}\)-valued sequence \(A_n\) growing to \({\mathbb {R}}^d\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogeshwaran, D., Subag, E. & Adler, R.J. Random geometric complexes in the thermodynamic regime. Probab. Theory Relat. Fields 167, 107–142 (2017). https://doi.org/10.1007/s00440-015-0678-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-015-0678-9

Keywords

Mathematics Subject Classification

Navigation