Probability Theory and Related Fields

, Volume 134, Issue 1, pp 1–43

Aging in two-dimensional Bouchaud's model

Authors

    • École PolytechniqueFédérale de Lausanne
    • Courant Institute of Mathematical Sciences
  • Jiří Černý
    • Weierstrass Institute for Applied Analysis and Stochastics (WIAS)
  • Thomas Mountford
    • Département de MathématiquesÉcole Polytechnique Fédérale de Lausanne
Article

DOI: 10.1007/s00440-004-0408-1

Cite this article as:
Ben Arous, G., Černý, J. & Mountford, T. Probab. Theory Relat. Fields (2006) 134: 1. doi:10.1007/s00440-004-0408-1
  • 92 Views

Abstract

Let Ex be a collection of i.i.d. exponential random variables. Symmetric Bouchaud's model on ℤ2 is a Markov chain X(t) whose transition rates are given by wxy = ν exp (−βEx) if x, y are neighbours in ℤ2. We study the behaviour of two correlation functions: ℙ[X(tw+t) = X(tw)] and ℙ[X(t') = X(tw) ∀ t'∈ [tw, tw + t]]. We prove the (sub)aging behaviour of these functions when β > 1.

Key words or phrases

AgingTrap modelLévy processRandom walkTime change

Mathematics Subject Classification (2000)

82D3082C4160F17

Copyright information

© Springer-Verlag Berlin Heidelberg 2005