Skip to main content

Advertisement

Log in

A review of gigaxonin mutations in giant axonal neuropathy (GAN) and cancer

  • Review
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Gigaxonin, the product of GAN gene localized to chromosome 16, is associated with the early onset neuronal degeneration disease giant axonal neuropathy (GAN). Gigaxonin is an E3 ubiquitin ligase adaptor protein involved in intermediate filament processing in neural cells, and vimentin filaments in fibroblasts. Mutations of the gene cause pre-neural filaments to accumulate and form giant axons resulting in the inhibition of neural cell signaling. Analysis of the catalog of somatic mutations in cancer, driver DB and IDGC data portal databases containing 21,000 tumor genomic sequences has identified GAN patient mutations in cancer cell lines and primary tumors. The database search has also shown the presence of identical missense and nonsense gigaxonin mutations in GAN and colon cancer. These mutations frequently occur in the domains associated with protein homodimerization and substrate interaction such as Broad-Complex, Tramtrack and Bric a brac (BTB), BTB associated C-terminal KELCH (BACK), and KELCH repeats. Analysis of the International HapMap Project database containing 1200 normal genomic sequences has identified a single nucleotide polymorphism (SNP), rs2608555, in exon 8 of the gigaxonin sequence. While this SNP is present in >40 % of Caucasian population, it is present in less than 10 % of Japanese and Chinese populations. Although the role of gigaxonin polymorphism is not yet known, CFTR and MDR1 gene studies have shown that silent mutations play a role in the instability and aberrant splicing and folding of mRNAs. We believe that molecular and functional investigation of gigaxonin mutations including the exon 8 polymorphism could lead to an improved understanding of the relationship between GAN and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abaan OD, Polley EC, Davis SR, Zhu YJ, Bilke S, Walker RL, Pineda M, Gindin Y, Jiang Y, Reinhold WC, Holbeck SL, Simon RM, Doroshow JH, Pommier Y, Meltzer PS (2013) The exomes of the NCI-60 panel: a genomic resource for cancer biology and systems pharmacology. Cancer Res 73:4372–4382. doi:10.1158/0008-5472.CAN-12-3342 (Epub 2013 Jul 15)

    Article  CAS  PubMed  Google Scholar 

  • Allen E, Ding J, Wang W, Pramanik S, Chou J, Yau V, Yang Y (2005) Gigaxonin-controlled degradation of MAP1B light chain is critical to neuronal survival. Nature 438:224–228 (Epub 2005 Oct 16)

    Article  CAS  PubMed  Google Scholar 

  • Asbury AK, Gale MK, Cox SC, Baringer JR, Berg BO (1972) Giant axonal neuropathy—a unique case with segmental neurofilamentous masses. Acta Neuropathol 20:237–247

    Article  CAS  PubMed  Google Scholar 

  • Berg BO, Rosenberg SH, Asbury AK (1972) Giant axonal neuropathy. Pediatrics 49:894–899

    CAS  PubMed  Google Scholar 

  • Boizot A, Talmat-Amar Y, Morrogh D, Kuntz NL, Halbert C, Chabrol B, Houlden H, Stojkovic T, Schulman BA, Rautenstrauss B, Bomont P (2014) The instability of the BTB-KELCH protein gigaxonin causes giant axonal neuropathy and constitutes a new penetrant and specific diagnostic test. Acta Neuropathol Commun 2:47. doi:10.1186/2051-5960-2-47

    Article  PubMed  PubMed Central  Google Scholar 

  • Bomont P, Koenig M (2003) Intermediate filament aggregation in fibroblasts of giant axonal neuropathy patients is aggravated in non dividing cells and by microtubule destabilization. Hum Mol Genet 12:813–822

    Article  CAS  PubMed  Google Scholar 

  • Bomont P, Cavalier L, Blondeau F, Ben Hamida C, Belal S, Tazir M, Demir E, Topaloglu H, Korinthenberg R, Tüysüz B, Landrieu P, Hentati F, Koenig M (2000) The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat Genet 26:370–374 (PMID: 11062483)

    Article  CAS  PubMed  Google Scholar 

  • Cavalier L, BenHamida C, Amouri R, Belal S, Bomont P, Lagarde N, Gressin L, Callen D, Demir E, Topaloglu H, Landrieu P, Ioos C, Hamida MB, Koenig M, Hentati F (2000) Giant axonal neuropathy locus refinement to a <590 kb critical interval. Eur J Hum Genet 8:527–534

    Article  CAS  PubMed  Google Scholar 

  • Cleveland DW, Yamanaka K, Bomont P (2009) Gigaxonin controls vimentin orGANization through a tubulin chaperone-independent pathway. Hum Mol Genet 18:1384–1394. doi:10.1093/hmg/ddp044 (Epub 2009 Jan 24)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen VC, Brownlees J, Banner S, Anderton BH, Leigh PN, Shaw CE, Miller CC (2004) Gigaxonin is associated with the Golgi and dimerises via its BTB domain. NeuroReport 15:873–876 (PMID: 15073534)

    Article  CAS  PubMed  Google Scholar 

  • Demir E, Bomont P, Erdem S, Cavalier L, Demirci M, Kose G, Muftuoglu S, Cakar AN, Tan E, Aysun S, Topcu M, Guicheney P, Koenig M, Topaloglu H (2005) Giant axonal neuropathy: clinical and genetic study in six cases. J Neurol Neurosurg Psychiatry 76:825–832 (PMID: 15897506)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dequen F, Bomont P, Gowing G, Cleveland DW, Julien JP (2008) Modest loss of peripheral axons, muscle atrophy and formation of brain inclusions in mice with targeted deletion of gigaxonin exon 1. J Neurochem 107:253–264. doi:10.1111/j.1471-4159.2008.05601.x (Epub 2008 Jul 31. PMID: 18680552)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Liu JJ, Kowal AS, Nardine T, Bhattacharya P, Lee A, Yang Y (2002) Microtubule-associated protein 1B: a neuronal binding partner for gigaxonin. J Cell Biol 158:427–433 (Epub 2002 Jul 29)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaghy M, King RH, Thomas PK, Workman JM (1988) Abnormalities of the axonal cytoskeleton in giant axonal neuropathy. J Neurocytol 17:197–208

    Article  CAS  PubMed  Google Scholar 

  • Faa′ V, Coiana A, Incani F, Costantino L, Cao A, Rosatelli MC (2010) A synonymous mutation in the CFTR gene causes aberrant splicing in an italian patient affected by a mild form of cystic fibrosis. J Mol Diag 12:380–383. doi:10.2353/jmoldx.2010.090126 (Epub 2010 Feb 26)

    Article  Google Scholar 

  • Furukawa M, He YJ, Borchers C, Xiong Y (2003) Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat Cell Biol 5:1001–1007 (Epub 2003 Oct 5)

    Article  CAS  PubMed  Google Scholar 

  • Ganay T, Boizot A, Burrer R, Chauvin JP, Bomont P (2011) Sensory-motor defecits and neurofilament disorGANization in gigaxonin-null mice. Mol Neurodegener 12(6):25

    Article  Google Scholar 

  • Gao F, Ihn HE, Medina MW, Krauss RM (2013) A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function. Hum Mol Genet 22:1424–1431. doi:10.1093/hmg/dds559 (Epub 2013 Jan 7)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannakis M, Hodis E, Jasmine MuX, Yamauchi M, Rosenbluh J, Cibulskis K, Saksena G, Lawrence MS, Qian ZR, Nishihara R, Van Allen EM, Hahn WC, Gabriel SB, Lander ES, Getz G, Ogino S, Fuchs CS, Garraway LA (2014) RNF43 is frequently mutated in colorectal and endometrial cancers. Nat Genet 46:1264–1266. doi:10.1038/ng.3127 (Epub 2014 Oct 26)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428 (PMID: 11917093)

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Kerner BL, Roth L, Greene JP, Wichterle H, Sproule DM (2014) Giant axonal neuropathy: an updated perspective on its pathology and pathogenesis. Muscle Nerve 50:467–476. doi:10.1002/mus.24321

    Article  CAS  PubMed  Google Scholar 

  • Johnson-Kerner BL, Ahmad FS, Diaz AG, Greene JP, Gray SJ, Samulski RJ, Chung WK, Van Coster R, Maertens P, Noggle SA, Henderson CE, Wichterle H (2015) Intermediate filament protein accumulation in motor neurons derived from giant axonal neuropathy iPSCs rescued by restoration of gigaxonin. Hum Mol Genet 24:1420–1431. doi:10.1093/hmg/ddu556 (Epub 2014 Nov 4)

    Article  CAS  PubMed  Google Scholar 

  • Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525–528 (Epub 2006 Dec 21)

    Article  CAS  PubMed  Google Scholar 

  • Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J, Pau G, Reeder J, Cao Y, Mukhyala K, Selvaraj SK, Yu M, Zynda GJ, Brauer MJ, Wu TD, Gentleman RC, Manning G, Yauch RL, Bourgon R, Stokoe D, Modrusan Z, Neve RM, de Sauvage FJ, Settleman J, Seshagiri S, Zhang Z (2015) A comprehensive transcriptional portrait of human cancer cell lines. Nat Biotechnol 33:306–312. doi:10.1038/nbt.3080 (Epub 2014 Dec 8)

    Article  CAS  PubMed  Google Scholar 

  • Kohsaka S, Shukla N, Ameur N, Ito T, Ng CK, Wang L, Lim D, Marchetti A, Viale A, Pirun M, Socci ND, Qin LX, Sciot R, Bridge J, Singer S, Meyers P, Wexler LH, Barr FG, Dogan S, Fletcher JA, Reis-Filho JS, Ladanyi M (2014) A recurrent neomorphic mutation in MYOD1 defines a clinically aggressive subset of embryonal rhabdomyosarcoma associated with PI3K-AKT pathway mutations. Nat Genet 46:595–600. doi:10.1038/ng.2969 (Epub 2014 May 4)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koop O, Schirmacher A, Nelis E, Timmerman V, De Jonghe P, Ringelstein B, Rasic VM, Evrard P, Gärtner J, Claeys KG, Appenzeller S, Rautenstrauss B, Hühne K, Ramos-Arroyo MA, Wörle H, Moilanen JS, Hammans S, Kuhlenbäumer G (2007) Genotype-phenotype analysis in patients with giant axonal neuropathy (GAN). Neuromuscul Disord 17:624–630 (Epub 2007 Jun 22)

    Article  PubMed  Google Scholar 

  • Kuhlenbäumer G, Young P, Oberwittler C, Hünermund G, Schirmacher A, Domschke K, Ringelstein B, Stögbauer F (2002) Giant axonal neuropathy (GAN): case report and two novel mutations in the gigaxonin gene. Neurology 58:1273–1276 (PMID: 11971098)

    Article  PubMed  Google Scholar 

  • Lou Y, Li R, Liu J, Zhang Y, Zhang X, Jin B, Liu Y, Wang Z, Zhong H, Wen S, Han B (2015) Mitofusin-2 over-expresses and leads to dysregulation of cell cycle and cell invasion in lung adenocarcinoma. Med Oncol 32:132. doi:10.1007/s12032-015-0515-0 (Epub 2015 Mar 22)

    Article  PubMed  Google Scholar 

  • Mahammad S, Murthy SN, Didonna A, Grin B, Israeli E, Perrot R, Bomont P, Julien JP, Kuczmarski E, Opal P, Goldman RD (2013) Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest 123:1964–1975. doi:10.1172/JCI66387 (Epub 2013 Apr 15)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuda S, Nakanishi A, Minami A, Wada Y, Kitagishi Y (2015) Functions and characteristics of PINK1 and Parkin in cancer. Front Biosci (landmark Ed.) 20:491–501 (PMID: 25553463)

    Article  Google Scholar 

  • Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, Arango D, Strausberg RL, Buchanan D, Wormald S, O’Connor L, Wilding JL, Bicknell D, Tomlinson IP, Bodmer WF, Mariadason JM, Sieber OM (2014) Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res 74:3238–3247. doi:10.1158/0008-5472.CAN-14-0013 (Epub 2014 Apr 22)

    Article  CAS  PubMed  Google Scholar 

  • Mussche S, Devreese B, Nagabhushan Kalburgi S, Bachaboina L, Fox JC, Shih HJ, Van Coster R, Samulski RJ, Gray SJ (2013) Restoration of cytoskeleton homeostasis after gigaxonin gene transfer for giant axonal neuropathy. Hum Gene Ther 24:209–219. doi:10.1089/hum.2012.107

    Article  CAS  PubMed  Google Scholar 

  • Muzny DM, Bainbridge MN, Chang K, Dinh HH, Drummond JA, Fowler G, Kovar CL, Lewis LR, Morgan MB, Newsham IF, Reid JG, Santibanez J, Shinbrot E, Trevino LR, Wu YQ, Wang M, Gunaratne P, Donehower LA, Creighton CJ, Wheeler DA, Gibbs RA, Lawrence MS, Voet D, Jing R, Cibulskis K, Sivachenko A et al (2012) Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337. doi:10.1038/nature11252

    Article  CAS  Google Scholar 

  • O’Neill LA, Kaltschmidt C (1997) NF-kappa B: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci 20:252–258 (PMID: 9185306)

    Article  PubMed  Google Scholar 

  • Satelli A, Li S (2011) Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 68:3033–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimura H, Hattori N, Si Kubo, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305 (PMID: 10888878)

    Article  CAS  PubMed  Google Scholar 

  • Todosi AM, Gavrilescu MM, Anitei GM, Filip B, Scripcariu V (2012) Colon cancer at the molecular level—usefulness of epithelial mesenchymal transition analysis. Rev Med Chir Soc Med Nat Iasi 116:1106–1111

    PubMed  Google Scholar 

  • Veena MS, Wilken R, Zheng JY, Gholkar A, Venkatesan N, Vira D, Ahmed S, Basak SK, Dalgard CL, Ravichandran S, Batra RK, Kasahara N, Elashoff D, Fishbein MC, Whitelegge JP, Torres JZ, Wang MB, Srivatsan ES (2014) p16 Protein and gigaxonin are associated with the ubiquitination of NFκB in cisplatin-induced senescence of cancer cells. J Biol Chem 289:34921–34937. doi:10.1074/jbc.M114.568543 (Epub 2014 Oct 20)

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Ding J, Allen E, Zhu P, Zhang L, Vogel H, Yang Y (2005) Gigaxonin interacts with tubulin folding cofactor B and controls its degradation through the ubiquitin-proteasome pathway. Curr Biol 15:2050–2055 (PMID: 16303566)

    Article  CAS  PubMed  Google Scholar 

  • Werk AN, Bruckmueller H, Haenisch S, Cascorbi I (2014) Genetic variants may play an important role in mRNA-miRNA interaction: evidence for haplotype-dependent downregulation of ABCC2 (MRP2) by miRNA-379. Pharmacogenet Genomics 24:283–291. doi:10.1097/FPC.0000000000000046

    Article  CAS  PubMed  Google Scholar 

  • Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schröder JM, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451 (Epub 2004 Apr 4)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eri S. Srivatsan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Data sharing

Authors are willing to share the data with the scientific community.

Funding

The study was supported by funds from VAGLAHS, West Los Angeles Surgical Education Research Center, UCLA Academic Senate Grants (M. B. Wang), and Merit grant from the Veterans Administration, Washington, D.C. (E. S. Srivatsan).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Supplementary material 2 (XLSX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J.J., Liu, I.Y., Wang, M.B. et al. A review of gigaxonin mutations in giant axonal neuropathy (GAN) and cancer. Hum Genet 135, 675–684 (2016). https://doi.org/10.1007/s00439-016-1659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-016-1659-5

Keywords

Navigation