Skip to main content

Advertisement

Log in

Characterisation of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The c-Jun N-terminal kinases (JNKs) are stress-activated serine-threonine kinases that have recently been linked to various neurological disorders. We previously described a patient with intellectual disability (ID) and seizures (Patient 1), carrying a de novo chromosome translocation affecting the CNS-expressed MAPK10/JNK3 gene. Here, we describe a second ID patient (Patient 2) with a similar translocation that likewise truncates MAPK10/JNK3, highlighting a role for JNK3 in human brain development. We have pinpointed the breakpoint in Patient 2, which is just distal to that in Patient 1. In both patients, the rearrangement resulted in a predicted protein interrupted towards the C-terminal end of the kinase domain. We demonstrate that these truncated proteins, although capable of weak interaction with various known JNK scaffolds, are not capable of phosphorylating the classical JNK target c-Jun in vitro, which suggests that the patient phenotype potentially arises from partial loss of JNK3 function. We next investigated JNK3-binding partners to further explore potential disease mechanisms. We identified PSD-95, SAP102 and SHANK3 as novel interaction partners for JNK3, and we demonstrate that JNK3 and PSD-95 exhibit partially overlapping expression at synaptic sites in cultured hippocampal neurons. Moreover, JNK3, like JNK1, is capable of phosphorylating PSD-95 in vitro, whereas disease-associated mutant JNK3 proteins do not. We conclude that reduced JNK3 activity has potentially deleterious effects on neuronal function via altered regulation of a set of post-synaptic proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arkesteijn G, Jumelet E, Hagenbeek A, Smit E, Slater R, Martens A (1999) Reverse chromosome painting for the identification of marker chromosomes and complex translocations in leukemia. Cytometry 35:117–124

    Article  PubMed  CAS  Google Scholar 

  • Baptista J, Mercer C, Prigmore E, Gribble SM, Carter NP, Maloney V, Thomas NS, Jacobs PA, Crolla JA (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82:927–936

    Article  PubMed  CAS  Google Scholar 

  • Bjorkblom B, Ostman N, Hongisto V, Komarovski V, Filen JJ, Nyman TA, Kallunki T, Courtney MJ, Coffey ET (2005) Constitutively active cytoplasmic c-Jun N-terminal kinase 1 is a dominant regulator of dendritic architecture: role of microtubule-associated protein 2 as an effector. J Neurosci 25:6350–6361

    Article  PubMed  Google Scholar 

  • Chen W, Erdogan F, Ropers HH, Lenzner S, Ullmann R (2005) CGHPRO—a comprehensive data analysis tool for array CGH. BMC Bioinformatics 6:85

    Article  PubMed  Google Scholar 

  • Derijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsater H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Roge B, Heron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27

    Article  PubMed  CAS  Google Scholar 

  • Edbauer D, Cheng D, Batterton MN, Wang CF, Duong DM, Yaffe MB, Peng J, Sheng M (2009) Identification and characterization of neuronal mitogen-activated protein kinase substrates using a specific phosphomotif antibody. Mol Cell Proteomics 8:681–695

    Article  PubMed  CAS  Google Scholar 

  • El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt DS (2000) PSD-95 involvement in maturation of excitatory synapses. Science 290:1364–1368

    PubMed  CAS  Google Scholar 

  • Feyder M, Karlsson RM, Mathur P, Lyman M, Bock R, Momenan R, Munasinghe J, Scattoni ML, Ihne J, Camp M, Graybeal C, Strathdee D, Begg A, Alvarez VA, Kirsch P, Rietschel M, Cichon S, Walter H, Meyer-Lindenberg A, Grant SG, Holmes A (2010) Association of mouse Dlg4 (PSD-95) gene deletion and human DLG4 gene variation with phenotypes relevant to autism spectrum disorders and Williams’ syndrome. Am J Psychiatry 167:1508–1517

    Article  PubMed  Google Scholar 

  • Jaffe H, Vinade L, Dosemeci A (2004) Identification of novel phosphorylation sites on postsynaptic density proteins. Biochem Biophys Res Commun 321:210–218

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer VM, FitzPatrick D, Tommerup N, Bugge M, Niebuhr E, Neumann LM, Tzschach A, Shoichet SA, Menzel C, Erdogan F, Arkesteijn G, Ropers HH, Ullmann R (2007) Mutations in autism susceptibility candidate 2 (AUTS2) in patients with mental retardation. Hum Genet 121:501–509

    Article  PubMed  Google Scholar 

  • Kim MJ, Futai K, Jo J, Hayashi Y, Cho K, Sheng M (2007) Synaptic accumulation of PSD-95 and synaptic function regulated by phosphorylation of serine-295 of PSD-95. Neuron 56:488–502

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita E, Kinoshita-Kikuta E (2011) Improved Phos-tag SDS-PAGE under neutral pH conditions for advanced protein phosphorylation profiling. Proteomics 11:319–323

    Article  PubMed  CAS  Google Scholar 

  • Kunde SA, Musante L, Grimme A, Fischer U, Muller E, Wanker EE, Kalscheuer VM (2011) The X-chromosome-linked intellectual disability protein PQBP1 is a component of neuronal RNA granules and regulates the appearance of stress granules. Hum Mol Genet 20:4916–4931

    Article  PubMed  CAS  Google Scholar 

  • Martin JH, Mohit AA, Miller CA (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Brain Res Mol Brain Res 35:47–57

    Article  PubMed  CAS  Google Scholar 

  • Matsuura H, Nishitoh H, Takeda K, Matsuzawa A, Amagasa T, Ito M, Yoshioka K, Ichijo H (2002) Phosphorylation-dependent scaffolding role of JSAP1/JIP3 in the ASK1-JNK signaling pathway. A new mode of regulation of the MAP kinase cascade. J Biol Chem 277:40703–40709

    Article  PubMed  CAS  Google Scholar 

  • Mehan S, Meena H, Sharma D, Sankhla R (2011) JNK: a stress-activated protein kinase therapeutic strategies and involvement in Alzheimer’s and various neurodegenerative abnormalities. J Mol Neurosci 43:376–390

    Article  PubMed  CAS  Google Scholar 

  • Pavlowsky A, Gianfelice A, Pallotto M, Zanchi A, Vara H, Khelfaoui M, Valnegri P, Rezai X, Bassani S, Brambilla D, Kumpost J, Blahos J, Roux MJ, Humeau Y, Chelly J, Passafaro M, Giustetto M, Billuart P, Sala C (2010a) A postsynaptic signaling pathway that may account for the cognitive defect due to IL1RAPL1 mutation. Curr Biol 20:103–115

    Article  PubMed  CAS  Google Scholar 

  • Pavlowsky A, Zanchi A, Pallotto M, Giustetto M, Chelly J, Sala C, Billuart P (2010b) Neuronal JNK pathway activation by IL-1 is mediated through IL1RAPL1, a protein required for development of cognitive functions. Commun Integr Biol 3:245–247

    Article  PubMed  Google Scholar 

  • Shoichet SA, Duprez L, Hagens O, Waetzig V, Menzel C, Herdegen T, Schweiger S, Dan B, Vamos E, Ropers HH, Kalscheuer VM (2006) Truncation of the CNS-expressed JNK3 in a patient with a severe developmental epileptic encephalopathy. Hum Genet 118:559–567

    Article  PubMed  Google Scholar 

  • Tarpey P, Parnau J, Blow M, Woffendin H, Bignell G, Cox C, Cox J, Davies H, Edkins S, Holden S, Korny A, Mallya U, Moon J, O’Meara S, Parker A, Stephens P, Stevens C, Teague J, Donnelly A, Mangelsdorf M, Mulley J, Partington M, Turner G, Stevenson R, Schwartz C, Young I, Easton D, Bobrow M, Futreal PA, Stratton MR, Gecz J, Wooster R, Raymond FL (2004) Mutations in the DLG3 gene cause nonsyndromic X-linked mental retardation. Am J Hum Genet 75:318–324

    Article  PubMed  CAS  Google Scholar 

  • Whisenant TC, Ho DT, Benz RW, Rogers JS, Kaake RM, et al (2010) Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors. PLoS Comput Biol 6(8):e1000908. doi:10.1371/journal.pcbi.1000908

  • Xu X, Raber J, Yang D, Su B, Mucke L (1997) Dynamic regulation of c-Jun N-terminal kinase activity in mouse brain by environmental stimuli. Proc Natl Acad Sci USA 94:12655–12660

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the ‘Deutsche Forschungsgemeinschaft’ through the Excellence Cluster NeuroCure (EXC257), by a grant from the German Ministry of Education and Research through the MRNET and the EU FP7 project GENCODYS (Grant # 241995). We thank S. Freier, M. Fuchs, and I. Müller for excellent technical assistance, and we are grateful to the patients and their families for their willingness to participate in this study.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Shoichet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunde, SA., Rademacher, N., Tzschach, A. et al. Characterisation of de novo MAPK10/JNK3 truncation mutations associated with cognitive disorders in two unrelated patients. Hum Genet 132, 461–471 (2013). https://doi.org/10.1007/s00439-012-1260-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-012-1260-5

Keywords

Navigation