Skip to main content

Advertisement

Log in

Genetic determinants of Tibetan high-altitude adaptation

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Some highland populations have genetic adaptations that enable their successful existence in a hypoxic environment. Tibetans are protected against many of the harmful responses exhibited by non-adapted populations upon exposure to severe hypoxia, including elevated hemoglobin concentration (i.e., polycythemia). Recent studies have highlighted several genes subject to natural selection in native high-altitude Tibetans. Three of these genes, EPAS1, EGLN1 and PPARA, regulate or are regulated by hypoxia inducible factor, a principal controller of erythropoiesis and other organismal functions. Uncovering the molecular basis of hypoxic adaptation should have implications for understanding hematological and other adaptations involved in hypoxia tolerance. Because the hypoxia response involves a variety of cardiovascular, pulmonary and metabolic functions, this knowledge would improve our understanding of disease mechanisms and could ultimately be translated into targeted therapies for oxygen deprivation, cardiopulmonary and cerebral pathologies, and metabolic disorders such as diabetes and obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Aggarwal S, Negi S, Jha P, Singh PK, Stobdan T, Pasha MAQ, Ghosh S, Agrawal A, Consortium IGV, Prasher B, Mukerji M (2010) EGLN1 involvement in high-altitude adaptation revealed through genetic analysis of extreme constitution types defined in Ayurveda. Proc Natl Acad Sci 107(44):18961–18966

    Article  PubMed  CAS  Google Scholar 

  • Aldenderfer M (2011) Peopling the Tibetan plateau: insights from archaeology. High Alt Med Biol 12(2):141–147

    Article  PubMed  Google Scholar 

  • Beall CM (2000) Tibetan and Andean patterns of adaptation to high-altitude hypoxia. Hum Biol 72(1):201–228

    PubMed  CAS  Google Scholar 

  • Beall CM (2007) Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci USA 104(Suppl 1):8655–8660

    Article  PubMed  CAS  Google Scholar 

  • Beall CM (2011) Genetic Changes in Tibet. High Alt Med Biol 12(2):101–102

    Article  PubMed  Google Scholar 

  • Beall CM, Brittenham GM, Strohl KP, Blangero J, Williams-Blangero S, Goldstein MC, Decker MJ, Vargas E, Villena M, Soria R, Alarcon AM, Gonzales C (1998) Hemoglobin concentration of high-altitude Tibetans and Bolivian Aymara. Am J Phys Anthropol 106(3):385–400

    Article  PubMed  CAS  Google Scholar 

  • Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, Li C, Li JC, Liang Y, McCormack M, Montgomery HE, Pan H, Robbins PA, Shianna KV, Tam SC, Tsering N, Veeramah KR, Wang W, Wangdui P, Weale ME, Xu Y, Xu Z, Yang L, Zaman MJ, Zeng C, Zhang L, Zhang X, Zhaxi P, Zheng YT (2010) Natural selection on EPAS1 (HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci 107(25):11459–11464

    Article  PubMed  CAS  Google Scholar 

  • Bigham AW, Mao X, Brutsaert T, Wilson MJ, Julian CG, Parra EJ, Akey JM, Moore LG, Shriver MD (2009) Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum Genomics 4(2):79–90

    PubMed  CAS  Google Scholar 

  • Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, Scherer SW, Julian CG, Wilson MJ, López Herráez D, Brutsaert T, Parra EJ, Moore LG, Shriver MD (2010) Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet 6(9):e1001116

    Article  PubMed  Google Scholar 

  • Brantingham PJ, Rhode D, Madsen DB (2010) Archaeology augments Tibet’s genetic history. Science 329(5998):1467

    Article  PubMed  Google Scholar 

  • Chen H, Patterson N, Reich D (2010) Population differentiation as a test for selective sweeps. Genome Res 20(3):393–402

    Article  PubMed  CAS  Google Scholar 

  • Cockerham CC, Weir BS (1984) Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 40(1):157–164

    Article  PubMed  CAS  Google Scholar 

  • Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713

    Article  PubMed  CAS  Google Scholar 

  • Encyclopedia Britannica Online (2011) Tibetan language. http://www.britannica.com/EBchecked/topic/594982/Tibetan-language

  • Formenti F, Constantin-Teodosiu D, Emmanuel Y, Cheeseman J, Dorrington KL, Edwards LM, Humphreys SM, Lappin TRJ, McMullin MF, McNamara CJ, Mills W, Murphy JA, O’Connor DF, Percy MJ, Ratcliffe PJ, Smith TG, Treacy M, Frayn KN, Greenhaff PL, Karpe F, Clarke K, Robbins PA (2010) Regulation of human metabolism by hypoxia-inducible factor. Proc Natl Acad Sci 107(28):12722–12727

    Article  PubMed  CAS  Google Scholar 

  • Furlow PW, Percy MJ, Sutherland S, Bierl C, McMullin MF, Master SR, Lappin TRJ, Lee FS (2009) Erythrocytosis-associated HIF-2α mutations demonstrate a critical role for residues C-terminal to the hydroxyl acceptor proline. J Biol Chem 284(14):9050–9058

    Article  PubMed  CAS  Google Scholar 

  • Hackett PH, Roach RC (2001) High-Altitude Illness. N Engl J Med 345(2):107–114

    Article  PubMed  CAS  Google Scholar 

  • HapMap Consortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449(7164):851–861

    Article  Google Scholar 

  • Hirota K, Semenza GL (2006) Regulation of angiogenesis by hypoxia-inducible factor 1. Crit Rev Oncol Hematol 59(1):15–26

    Article  PubMed  Google Scholar 

  • Holsinger KE, Weir BS (2009) Genetics in geographically structured populations: defining, estimating and interpreting FST. Nat Rev Genet 10(9):639–650

    Article  PubMed  CAS  Google Scholar 

  • Huff C, Harpending H, Rogers A (2010) Detecting positive selection from genome scans of linkage disequilibrium. BMC Genomics 11(1):8

    Article  PubMed  Google Scholar 

  • Kaelin WGJ, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402

    Article  PubMed  CAS  Google Scholar 

  • Lee FS (2008) Genetic causes of erythrocytosis and the oxygen-sensing pathway. Blood Rev 22(6):321–332

    Article  PubMed  CAS  Google Scholar 

  • Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, Myers RM (2008) Worldwide human relationships inferred from genome-wide patterns of variation. Science 319(5866):1100–1104

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo F, Swierczek S, Huff C, Prchal JT (2011) The Tibetan PHD2 polymorphism Asp4Glu is associated with hypersensitivity of erythroid progenitors to EPO and upregulation of HIF-1 regulated genes hexokinase (HK1) and glucose transporter 1 (SLC2A/GLUT1). Abstract submitted to 2011 meeting of the American Society of Hematology

  • MacInnis MJ, Rupert JL (2011) ’ome on the Range: altitude adaptation, positive selection, and himalayan genomics. High Alt Med Biol 12(2):133–139

    Article  PubMed  Google Scholar 

  • MacInnis MJ, Koehle MS, Rupert JL (2010) Evidence for a genetic basis for altitude illness: 2010 update. High Alt Med Biol 11(4):349–368

    Article  PubMed  CAS  Google Scholar 

  • Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40(2):294–309

    Article  PubMed  CAS  Google Scholar 

  • Monge CC, Whittembury J (1976) Chronic mountain sickness. Johns Hopkins Med J 139(SUPPL):187–189

    Google Scholar 

  • Moore LG (2001) Human genetic adaptation to high altitude. High Alt Med Biol 2(2):257–279

    Article  PubMed  CAS  Google Scholar 

  • Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, Tao X, Wu T, Ouzhuluobu, Basang, Ciwangsangbu, Danzengduojie, Chen H, Shi H, Su B (2011) Genetic variations in Tibetan populations and high-altitude adaptation at the Himalayas. Mol Biol Evol 28(2):1075–1081

    Google Scholar 

  • Prchal JT (2010) Clinical manifestations and classification of erythrocyte disorders. In: Kaushansky N, Beutler E, Seligsohn U, Litchman MA, Kipps TJ, Prchal JT (eds) Williams Hematology, Vol 8. McGraw-Hill, New York, pp 455–462

  • Qin Z, Yang Y, Kang L, Yan S, Cho K, Cai X, Lu Y, Zheng H, Zhu D, Fei D, Li S, Jin L, Li H (2010) A mitochondrial revelation of early human migrations to the Tibetan Plateau before and after the last glacial maximum. Am J Phys Anthropol 143(4):555–569

    Article  PubMed  Google Scholar 

  • Rupert J (2010) Will blood tell? Three recent articles demonstrate genetic selection in Tibetans. High Alt Med Biol 11(4):307–308

    Article  PubMed  Google Scholar 

  • Rupert JL, Koehle MS (2006) Evidence for a genetic basis for altitude-related illness. High Alt Med Biol 7(2):150–167

    Article  PubMed  CAS  Google Scholar 

  • Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449(7164):913–918

    Article  PubMed  CAS  Google Scholar 

  • Scheinfeldt L, Tishkoff S (2010) Living the high life: high-altitude adaptation. Genome Biol 11(9):133

    Article  PubMed  Google Scholar 

  • Semenza GL (1999) Perspectives on oxygen sensing. Cell 98(3):281–284

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2009) Involvement of oxygen-sensing pathways in physiologic and pathologic erythropoiesis. Blood 114(10):2015–2019

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2010) Vascular responses to hypoxia and ischemia. Arterioscler Thromb Vasc Biol 30(4):648–652

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2011) Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophys Acta (BBA): Mol Cell Res 1813(7):1263–1268

    Article  CAS  Google Scholar 

  • Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, Bai Z, Lorenzo FR, Xing J, Jorde LB, Prchal JT, Ge R (2010) Genetic evidence for high-altitude adaptation in Tibet. Science 329(5987):72–75

    Article  PubMed  CAS  Google Scholar 

  • Storz JF, Scott GR, Cheviron ZA (2010) Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol 213(24):4125–4136

    Article  PubMed  Google Scholar 

  • Tissot van Patot MC, Gassmann M (2011) Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2α. High Alt Med Biol 12(2):157–167

    Article  Google Scholar 

  • Vargas PE, Spielvogel H (2006) Chronic mountain sickness, optimal hemoglobin, and heart disease. High Alt Med Biol 7(2):138–149

    Article  PubMed  Google Scholar 

  • Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4(3):e72

    Article  PubMed  Google Scholar 

  • Wang B, Zhang Y-B, Zhang F, Lin H, Wang X, Wan N, Ye Z, Weng H, Zhang L, Li X, Yan J, Wang P, Wu T, Cheng L, Wang J, Wang D-M, Ma X, Yu J (2011) On the origin of Tibetans and their genetic basis in adapting high-altitude environments. PLoS One 6(2):e17002

    Article  PubMed  CAS  Google Scholar 

  • Wills C (2011) Rapid recent human evolution and the accumulation of balanced genetic polymorphisms. High Alt Med Biol 12(2):149–155

    Article  PubMed  Google Scholar 

  • Wu T, Wang X, Wei C, Cheng H, Wang X, Li Y, Ge D, Zhao H, Young P, Li G, Wang Z (2005) Hemoglobin levels in Qinghai-Tibet: different effects of gender for Tibetans vs Han. J Appl Physiol 98(2):598–604

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Li S, Yang Y, Tan J, Lou H, Jin W, Yang L, Pan X, Wang J, Shen Y, Wu B, Wang H, Jin L (2011) A genome-wide search for signals of high altitude adaptation in Tibetans. Mol Biol Evol 28(2):1003–1011

    Article  PubMed  CAS  Google Scholar 

  • Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS, Zheng H, Liu T, He W, Li K, Luo R, Nie X, Wu H, Zhao M, Cao H, Zou J, Shan Y, Li S, Yang Q, Asan, Ni P, Tian G, Xu J, Liu X, Jiang T, Wu R, Zhou G, Tang M, Qin J, Wang T, Feng S, Li G, Huasang, Luosang J, Wang W, Chen F, Wang Y, Zheng X, Li Z, Bianba Z, Yang G, Wang X, Tang S, Gao G, Chen Y, Luo Z, Gusang L, Cao Z, Zhang Q, Ouyang W, Ren X, Liang H, Zheng H, Huang Y, Li J, Bolund L, Kristiansen K, Li Y, Zhang Y, Zhang X, Li R, Li S, Yang H, Nielsen R, Wang J, Wang J (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science 329(5987):75–78

  • Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, Ponka P, Semenza GL, Schumacher A, Prchal JT (2006) Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem 281(35):25703–25711

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Kong Q-P, Wang H-W, Peng M-S, Xie X-D, Wang W-Z, Jiayang, Duan J-G, Cai M-C, Zhao S-N, Cidanpingcuo, Tu Y-Q, Wu S-F, Yao Y-G, Bandelt H-J, Zhang Y-P (2009) Mitochondrial genome evidence reveals successful late paleolithic settlement on the Tibetan Plateau. Proc Natl Acad Sci 106(50):21230–21235

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef T. Prchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonson, T.S., McClain, D.A., Jorde, L.B. et al. Genetic determinants of Tibetan high-altitude adaptation. Hum Genet 131, 527–533 (2012). https://doi.org/10.1007/s00439-011-1109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-011-1109-3

Keywords

Navigation