Skip to main content
Log in

The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Proximal spinal muscular atrophy (SMA) is a common autosomal recessively inherited neuromuscular disorder causing infant death in half of all patients. Homozygous loss of the survival motor neuron 1 (SMN1) gene causes SMA, whereas the number of the SMN2 copy genes modulates the severity of the disease. Due to a silent mutation within an exonic splicing enhancer, SMN2 mainly produces alternatively spliced transcripts lacking exon 7 and only ∼ 10% of a full-length protein identical to SMN1. However, SMN2 represents a promising target for an SMA therapy. The correct splicing of SMN2 can be efficiently restored by over-expression of the splicing factor Htra2-β1 as well as by exogenous factors like drugs that inhibit histone deacetylases (HDACs). Here we show that the novel benzamide M344, an HDAC inhibitor, up-regulates SMN2 protein expression in fibroblast cells derived from SMA patients up to 7-fold after 64 h of treatment. Moreover, M344 significantly raises the total number of gems/nucleus as well as the number of nuclei that contain gems. This is the strongest in vitro effect of a drug on the SMN protein level reported so far. The reversion of Δ7-SMN2 into FL-SMN2 transcripts as demonstrated by quantitative RT-PCR is most likely facilitated by elevated levels of Htra2-β1. Investigations of the cytotoxicity of M344 using an MTT assay revealed toxic cell effects only at very high concentrations. In conclusion, M344 can be considered as highly potent HDAC inhibitor which is active at low doses and therefore represents a promising candidate for a causal therapy of SMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreassi C, Angelozzi C, Tiziano FD, Vitali T, De Vincenzi E, Boninsegna A, Villanova M, Bertini E, Pini A, Neri G, Brahe C (2004) Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 12:59–65

    Article  PubMed  CAS  Google Scholar 

  • Andreassi C, Jarecki J, Zhou J, Coovert DD, Monani UR, Chen X, Whitney M, Pollok B, Zhang M, Androphy E, Burghes AH (2001) Aclarubicin treatment restores SMN levels to cells derived from type I spinal muscular atrophy patients. Hum Mol Genet 10:2841–2849

    Article  PubMed  CAS  Google Scholar 

  • Baron-Delage S, Abadie A, Echaniz-Laguna A, Melki J, Beretta L (2000) Interferons and IRF-1 induce expression of the survival motor neuron (SMN) genes. Mol Med 6:957–968

    PubMed  CAS  Google Scholar 

  • Brahe C, Vitali T, Tiziano FD, Angelozzi C, Pinto AM, Borgo F, Moscato U, Bertini E, Mercuri E, Neri G (2005) Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur J Hum Genet 13:256–259

    Article  PubMed  CAS  Google Scholar 

  • Brichta L, Hofmann Y, Hahnen E, Siebzehnrubl FA, Raschke H, Blumcke I, Eyupoglu IY, Wirth B (2003) Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12:2481–2489

    Article  PubMed  CAS  Google Scholar 

  • Brichta L, Holker I, Haug K, Klockgether T, Wirth B (2006) In-vivo activation of SMN in SMA carriers and patients treated with valpr. Ann Neurol 59 April 10; [Epub ahead of print]

  • Burghes AH (1997) When is a deletion not a deletion? When it is converted. Am J Hum Genet 61:9–15

    Article  PubMed  CAS  Google Scholar 

  • Carissimi C, Saieva L, Baccon J, Chiarella P, Maiolica A, Sawyer A, Rappsilber J, Pellizzoni L (2006) Gemin8 is a novel component of the survival motor neuron complex and functions in small nuclear ribonucleoprotein assembly. J Biol Chem 281:8126–8134

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30:377–384

    Article  PubMed  CAS  Google Scholar 

  • Cartegni L, Hastings ML, Calarco JA, de Stanchina E, Krainer AR (2006) Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet 78:63–77

    Article  PubMed  CAS  Google Scholar 

  • Chang JG, Hsieh-Li HM, Jong YJ, Wang NM, Tsai CH, Li H (2001) Treatment of spinal muscular atrophy by sodium butyrate. Proc Natl Acad Sci USA 98:9808–9813

    Article  PubMed  CAS  Google Scholar 

  • Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AH (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6:1205–1214

    Article  PubMed  CAS  Google Scholar 

  • Eyupoglu IY, Hahnen E, Trankle C, Savaskan NE, Siebzehnrubl FA, Buslei R, Lemke D, Wick W, Fahlbusch R, Blumcke I (2006) Experimental therapy of malignant gliomas using the inhibitor of class I histone deacetylases MS-275. Mol Cancer Ther May 5; [Epub ahead of print]

  • Feldkotter M, Schwarzer V, Wirth R, Wienker TF, Wirth B (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368

    Article  PubMed  CAS  Google Scholar 

  • Grzeschik SM, Ganta M, Prior TW, Heavlin WD, Wang CH (2005) Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells. Ann Neurol 58:194–202

    Article  PubMed  CAS  Google Scholar 

  • Gubitz AK, Feng W, Dreyfuss G (2004) The SMN complex. Exp Cell Res 296:51–56

    Article  PubMed  CAS  Google Scholar 

  • Hahnen E, Eyupoglu IY, Brichta L, Haastert K, Tränkle C, Siebzehnrübl FA, Riessland M, Hölker I, Claus P, Romstöck J, Buslei R, Wirth B, Blümcke I (2006) In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem DOI:10.1111/j.1471–4159.2006.03868.x

  • Helmken C, Hofmann Y, Schoenen F, Oprea G, Raschke H, Rudnik-Schoneborn S, Zerres K, Wirth B (2003) Evidence for a modifying pathway in SMA discordant families: reduced SMN level decreases the amount of its interacting partners and Htra2-beta1. Hum Genet 114:11–21

    Article  PubMed  CAS  Google Scholar 

  • Hofmann Y, Lorson CL, Stamm S, Androphy EJ, Wirth B (2000) Htra2-beta 1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proc Natl Acad Sci USA 97:9618–9623

    Article  PubMed  CAS  Google Scholar 

  • Hofmann Y, Wirth B (2002) hnRNP-G promotes exon 7 inclusion of survival motor neuron (SMN) via direct interaction with Htra2-beta1. Hum Mol Genet 11:2037–2049

    Article  PubMed  CAS  Google Scholar 

  • Hsieh-Li HM, Chang JG, Jong YJ, Wu MH, Wang NM, Tsai CH, Li H (2000) A mouse model for spinal muscular atrophy. Nat Genet 24:66–70

    Article  PubMed  CAS  Google Scholar 

  • Jung M, Brosch G, Kolle D, Scherf H, Gerhauser C, Loidl P (1999) Amide analogues of trichostatin A as inhibitors of histone deacetylase and inducers of terminal cell differentiation. J Med Chem 42:4669–4679

    Article  PubMed  CAS  Google Scholar 

  • Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34:460–463

    Article  PubMed  CAS  Google Scholar 

  • Kernochan LE, Russo ML, Woodling NS, Huynh TN, Avila AM, Fischbeck KH, Sumner CJ (2005) The role of histone acetylation in SMN gene expression. Hum Mol Genet 14(9):1171–1182

    Article  PubMed  CAS  Google Scholar 

  • Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD, Gavrilina TO, Xing L, Bassell GJ, Burghes AH (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14:845–857

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80:155–165

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre S, Burlet P, Liu Q, Bertrandy S, Clermont O, Munnich A, Dreyfuss G, Melki J (1997) Correlation between severity and SMN protein level in spinal muscular atrophy. Nat Genet 16:265–269

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Dreyfuss G (1996) A novel nuclear structure containing the survival of motor neurons protein. Embo J 15:3555–3565

    PubMed  CAS  Google Scholar 

  • Liu Q, Fischer U, Wang F, Dreyfuss G (1997) The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90:1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Lorson CL, Androphy EJ (2000) An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN. Hum Mol Genet 9:259–265

    Article  PubMed  CAS  Google Scholar 

  • Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci USA 96:6307–6311

    Article  PubMed  CAS  Google Scholar 

  • Lorson CL, Strasswimmer J, Yao JM, Baleja JD, Hahnen E, Wirth B, Le T, Burghes AH, Androphy EJ (1998) SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat Genet 19:63–66

    Article  PubMed  CAS  Google Scholar 

  • Lunn MR, Root DE, Martino AM, Flaherty SP, Kelley BP, Coovert DD, Burghes AH, Man NT, Morris GE, Zhou J, Androphy EJ, Sumner CJ, Stockwell BR (2004) Indoprofen upregulates the survival motor neuron protein through a cyclooxygenase-independent mechanism. Chem Biol 11:1489–1493

    Article  PubMed  CAS  Google Scholar 

  • Monani UR, Sendtner M, Coovert DD, Parsons DW, Andreassi C, Le TT, Jablonka S, Schrank B, Rossol W, Prior TW, Morris GE, Burghes AH (2000) The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn(−/−) mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 9:333–339

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Munsat TL, Davies KE (1992) International SMA consortium meeting. (26–28 June 1992, Bonn, Germany). Neuromuscul Disord 2:423–428

    Article  PubMed  CAS  Google Scholar 

  • Patrizi AL, Tiziano F, Zappata S, Donati MA, Neri G, Brahe C (1999) SMN protein analysis in fibroblast, amniocyte and CVS cultures from spinal muscular atrophy patients and its relevance for diagnosis. Eur J Hum Genet 7:301–309

    Article  PubMed  CAS  Google Scholar 

  • Pazin MJ, Kadonaga JT (1997) What’s up and down with histone deacetylation and transcription? Cell 89:325–328

    Article  PubMed  CAS  Google Scholar 

  • Pearn JH, Hudgson P, Walton JN (1978) A clinical and genetic study of spinal muscular atrophy of adult onset: the autosomal recessive form as a discrete disease entity. Brain 101:591–606

    Article  PubMed  CAS  Google Scholar 

  • Pellizzoni L, Kataoka N, Charroux B, Dreyfuss G (1998) A novel function for SMN, the spinal muscular atrophy disease gene product, in pre-mRNA splicing. Cell 95:615–624

    Article  PubMed  CAS  Google Scholar 

  • Rossoll W, Jablonka S, Andreassi C, Kroning AK, Karle K, Monani UR, Sendtner M (2003) Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol 163:801–812

    Article  PubMed  CAS  Google Scholar 

  • Rossoll W, Kroning AK, Ohndorf UM, Steegborn C, Jablonka S, Sendtner M (2002) Specific interaction of Smn, the spinal muscular atrophy determining gene product, with hnRNP-R and gry-rbp/hnRNP-Q: a role for Smn in RNA processing in motor axons? Hum Mol Genet 11:93–105

    Article  PubMed  CAS  Google Scholar 

  • Sumner CJ, Huynh TN, Markowitz JA, Perhac JS, Hill B, Coovert DD, Schussler K, Chen X, Jarecki J, Burghes AH, Taylor JP, Fischbeck KH (2003) Valproic acid increases SMN levels in spinal muscular atrophy patient cells. Ann Neurol 54:647–654

    Article  PubMed  CAS  Google Scholar 

  • Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15:228–237

    Article  PubMed  CAS  Google Scholar 

  • Young PJ, DiDonato CJ, Hu D, Kothary R, Androphy EJ, Lorson CL (2002) SRp30c-dependent stimulation of survival motor neuron (SMN) exon 7 inclusion is facilitated by a direct interaction with hTra2 beta 1. Hum Mol Genet 11:577–587

    Article  PubMed  CAS  Google Scholar 

  • Zerres K, Rudnik-Schoneborn S, Forkert R, Wirth B (1995) Genetic basis of adult-onset spinal muscular atrophy. Lancet 346:1162

    Article  PubMed  CAS  Google Scholar 

  • Zhang HL, Pan F, Hong D, Shenoy SM, Singer RH, Bassell GJ (2003) Active transport of the survival motor neuron protein and the role of exon-7 in cytoplasmic localization. J Neurosci 23:6627–6637

    PubMed  CAS  Google Scholar 

  • Zhang ML, Lorson CL, Androphy EJ, Zhou J (2001) An in vivo reporter system for measuring increased inclusion of exon 7 in SMN2 mRNA: potential therapy of SMA. Gene Ther 8:1532–1538

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the patients and their families for their contributions to the presented work. This study was supported by grants provided by the Deutsche Forschungsgemeinschaft (Wi 945/12–1); Families of SMA WIR0507; Center for Molecular Medicine Cologne (TV98), and Koeln Fortune Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brunhilde Wirth.

Additional information

Database: SMN1–OMIM: 600354; GeneBank: U18423. SMN2–OMIM: 601627: GeneBank: NM_022875.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riessland, M., Brichta, L., Hahnen, E. et al. The benzamide M344, a novel histone deacetylase inhibitor, significantly increases SMN2 RNA/protein levels in spinal muscular atrophy cells. Hum Genet 120, 101–110 (2006). https://doi.org/10.1007/s00439-006-0186-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-006-0186-1

Keywords

Navigation