Skip to main content
Log in

Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes

  • Review Article
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The ATP-sensitive potassium (KATP) channel couples membrane excitability to cellular metabolism and is a critical mediator in the process of glucose-stimulated insulin secretion. Increasing numbers of KATP channel polymorphisms are being described and linked to altered insulin secretion indicating that genes encoding this ion channel could be susceptibility markers for type-2 diabetes. Genetic variation of KATP channels may result in altered β-cell electrical activity, glucose homeostasis, and increased susceptibility to type-2 diabetes. Of particular interest is the Kir6.2 E23K polymorphism, which is linked to increased susceptibility to type-2 diabetes in Caucasian populations and may also be associated with weight gain and obesity, both of which are major diabetes risk factors. This association highlights the potential contribution of both genetic and environmental factors to the development and progression of type-2 diabetes. In addition, the common occurrence of the E23K polymorphism in Caucasian populations may have conferred an evolutionary advantage to our ancestors. This review will summarize the current status of the association of KATP channel polymorphisms with type-2 diabetes, focusing on the possible mechanisms by which these polymorphisms alter glucose homeostasis and offering insights into possible evolutionary pressures that may have contributed to the high prevalence of KATP channel polymorphisms in the Caucasian population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar-Bryan L, Bryan J (1999) Molecular biology of adenosine triphosphate-sensitive potassium channels. Endocr Rev 20:101–135

    Article  CAS  PubMed  Google Scholar 

  • Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement JP, Boyd AE, III, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995) Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268:423–426

    CAS  PubMed  Google Scholar 

  • Aguilar-Bryan L, Clement JP, Gonzalez G, Kunjilwar K, Babenko A, Bryan J (1998) Toward understanding the assembly and structure of KATP channels. Physiol Rev 78:227–245

    CAS  PubMed  Google Scholar 

  • Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet D, Hudson TJ, Daly M, Groop L, Lander ES (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:76–80

    Article  CAS  PubMed  Google Scholar 

  • Ashcroft FM (2000) The Yin and Yang of the K(ATP) channel. J Physiol (Lond) 528:405

    Article  CAS  Google Scholar 

  • Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54:87–143

    Article  CAS  PubMed  Google Scholar 

  • Babenko AP, Gonzalez G, Bryan J (2000) Pharmaco-topology of sulfonylurea receptors. Separate domains of the regulatory subunits of K(ATP) channel isoforms are required for selective interaction with K(+) channel openers. J Biol Chem 275:717–720

    Google Scholar 

  • Barnett AH, Eff C, Leslie RD, Pyke DA (1981) Diabetes in identical twins. A study of 200 pairs. Diabetologia 20:87–93

    CAS  PubMed  Google Scholar 

  • Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O’Rahilly S, Wareham NJ (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1:E20

    Article  PubMed  Google Scholar 

  • Beck-Nielsen H, Vaag A, Poulsen P, Gaster M (2003) Metabolic and genetic influence on glucose metabolism in type 2 diabetic subjects–experiences from relatives and twin studies. Best Pract Res Clin Endocrinol Metab 17:445–467

    Article  CAS  PubMed  Google Scholar 

  • Bergeron R, Russell RR, III, Young LH, Ren JM, Marcucci M, Lee A, Shulman GI (1999) Effect of AMPK activation on muscle glucose metabolism in conscious rats. Am J Physiol 276:E938-E944

    CAS  PubMed  Google Scholar 

  • Bokvist K, Olsen HL, Hoy M, Gotfredsen CF, Holmes WF, Buschard K, Rorsman P, Gromada J (1999) Characterisation of sulphonylurea and ATP-regulated K+ channels in rat pancreatic A-cells. Pflugers Arch 438:428–436

    Article  CAS  PubMed  Google Scholar 

  • Branstrom R, Corkey BE, Berggren PO, Larsson O (1997) Evidence for a unique long chain acyl-CoA ester binding site on the ATP-regulated potassium channel in mouse pancreatic beta cells. J Biol Chem 272:17390–17394

    Article  CAS  PubMed  Google Scholar 

  • Branstrom R, Leibiger IB, Leibiger B, Corkey BE, Berggren PO, Larsson O (1998) Long chain coenzyme A esters activate the pore-forming subunit (Kir6. 2) of the ATP-regulated potassium channel. J Biol Chem 273:31395–31400

    Article  CAS  PubMed  Google Scholar 

  • Briscoe CP, Tadayyon M, Andrews JL, Benson WG, Chambers JK, Eilert MM, Ellis C, Elshourbagy NA, Goetz AS, Minnick DT, Murdock PR, Sauls HR Jr, Shabon U, Spinage LD, Strum JC, Szekeres PG, Tan KB, Way JM, Ignar DM, Wilson S, Muir AI (2003) The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem 278:11303–11311

    Article  CAS  PubMed  Google Scholar 

  • Chakravarthy MV, Booth FW (2004) Eating, exercise, and “thrifty” genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol 96:3–10

    Article  PubMed  Google Scholar 

  • Charles MA, Eschwege E, Thibult N, Claude JR, Warnet JM, Rosselin GE, Girard J, Balkau B (1997) The role of non-esterified fatty acids in the deterioration of glucose tolerance in Caucasian subjects: results of the Paris Prospective Study. Diabetologia 40:1101–1106

    Article  CAS  PubMed  Google Scholar 

  • Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18:827–838

    Article  CAS  PubMed  Google Scholar 

  • Clement L, Cruciani-Guglielmacci C, Magnan C, Vincent M, Douared L, Orosco M, Assimacopoulos-Jeannet F, Penicaud L, Ktorza A (2002) Intracerebroventricular infusion of a triglyceride emulsion leads to both altered insulin secretion and hepatic glucose production in rats. Pflugers Arch 445:375–380

    Article  CAS  PubMed  Google Scholar 

  • Cook DL, Satin LS, Ashford ML, Hales CN (1988) ATP-sensitive K+ channels in pancreatic beta-cells. Spare-channel hypothesis. Diabetes 37:495–498

    CAS  Google Scholar 

  • Cordain L, Gotshall RW, Eaton SB, Eaton SB III (1998) Physical activity, energy expenditure and fitness: an evolutionary perspective. Int J Sports Med 19:328–335

    CAS  PubMed  Google Scholar 

  • Corkey BE (1988) Analysis of acyl-coenzyme A esters in biological samples. Methods Enzymol 166:55–70

    CAS  PubMed  Google Scholar 

  • Corkey BE, Deeney JT, Yaney GC, Tornheim K, Prentki M (2000) The role of long-chain fatty acyl-CoA esters in beta-cell signal transduction. J Nutr 130:299S–304S

    CAS  PubMed  Google Scholar 

  • Cukras CA, Jeliazkova I, Nichols CG (2002) The role of NH2-terminal positive charges in the activity of inward rectifier KATP channels. J Gen Physiol 120:437–446

    Article  CAS  PubMed  Google Scholar 

  • Deeney JT, Tornheim K, Korchak HM, Prentki M, Corkey BE (1992) Acyl-CoA esters modulate intracellular Ca2+ handling by permeabilized clonal pancreatic beta-cells. J Biol Chem 267:19840–19845

    CAS  PubMed  Google Scholar 

  • Dela F, Mikines KJ, Linstow M von, Secher NH, Galbo H (1992) Effect of training on insulin-mediated glucose uptake in human muscle. Am J Physiol 263:E1134-E1143

    CAS  PubMed  Google Scholar 

  • Elbein SC (2002) Perspective: the search for genes for type 2 diabetes in the post-genome era. Endocrinology 143:2012–2018

    Article  CAS  PubMed  Google Scholar 

  • Florez JC, Burtt N, De Bakker PI, Almgren P, Tuomi T, Holmkvist J, Gaudet D, Hudson TJ, Schaffner SF, Daly MJ, Hirschhorn JN, Groop L, Altshuler D (2004) Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 53:1360–1368

    CAS  PubMed  Google Scholar 

  • Gloyn AL (2003) The search for type 2 diabetes genes. Ageing Res Rev 2:111–127

    Article  CAS  PubMed  Google Scholar 

  • Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, Turner RC (2001) Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with type 2 diabetes mellitus (UKPDS 53). Diabet Med 18:206–212

    CAS  PubMed  Google Scholar 

  • Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley AT, Frayling TM (2003) Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52:568–572

    CAS  PubMed  Google Scholar 

  • Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple IK, Mackay D, Shield JP, Sumnik Z, Rhijn A van, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njolstad PR, Ashcroft FM, Hattersley AT (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Golay A, Swislocki AL, Chen YD, Jaspan JB, Reaven GM (1986) Effect of obesity on ambient plasma glucose, free fatty acid, insulin, growth hormone, and glucagon concentrations. J Clin Endocrinol Metab 63:481–484

    CAS  PubMed  Google Scholar 

  • Goodwin GW, Taegtmeyer H (2000) Improved energy homeostasis of the heart in the metabolic state of exercise. Am J Physiol Heart Circ Physiol 279:H1490-H1501

    CAS  PubMed  Google Scholar 

  • Gramolini A, Renaud JM (1997) Blocking ATP-sensitive K+ channel during metabolic inhibition impairs muscle contractility. Am J Physiol 272:C1936-C1946

    CAS  PubMed  Google Scholar 

  • Gribble FM, Tucker SJ, Ashcroft FM (1997) The essential role of the Walker A motifs of SUR1 in K-ATP channel activation by Mg-ADP and diazoxide. EMBO J 16:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Gribble FM, Proks P, Corkey BE, Ashcroft FM (1998) Mechanism of cloned ATP-sensitive potassium channel activation by oleoyl-CoA. J Biol Chem 273:26383–26387

    Article  CAS  PubMed  Google Scholar 

  • Gribble FM, Loussouarn G, Tucker SJ, Zhao C, Nichols CG, Ashcroft FM (2000) A novel method for measurement of submembrane ATP concentration. J Biol Chem 275:30046–30049

    Article  CAS  PubMed  Google Scholar 

  • Hani EH, Clement K, Velho G, Vionnet N, Hager J, Philippi A, Dina C, Inoue H, Permutt MA, Basdevant A, North M, Demenais F, Guy-Grand B, Froguel P (1997) Genetic studies of the sulfonylurea receptor gene locus in NIDDM and in morbid obesity among French Caucasians. Diabetes 46:688–694

    CAS  PubMed  Google Scholar 

  • Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, Froguel P (1998) Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia 41:1511–1515

    Google Scholar 

  • Hansen L, Echwald SM, Hansen T, Urhammer SA, Clausen JO, Pedersen O (1997) Amino acid polymorphisms in the ATP-regulatable inward rectifier Kir6.2 and their relationships to glucose- and tolbutamide-induced insulin secretion, the insulin sensitivity index, and NIDDM. Diabetes 46:508–512

    CAS  PubMed  Google Scholar 

  • Hansen T, Ambye L, Grarup N, Hansen L, Echwald SM, Ferrer J, Pedersen O (2001) Genetic variability of the SUR1 promoter in relation to beta-cell function and type II diabetes mellitus. Diabetologia 44:1330–1334

    Article  CAS  PubMed  Google Scholar 

  • Hart LM, Knijff P de, Dekker JM, Stolk RP, Nijpels G, Does FE van der, Ruige JB, Grobbee DE, Heine RJ, Maassen JA (1999) Variants in the sulphonylurea receptor gene: association of the exon 16–3t variant with type II diabetes mellitus in Dutch Caucasians. Diabetologia 42:617–620

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Hirshman MF, Kurth EJ, Winder WW, Goodyear LJ (1998) Evidence for 5′ AMP-activated protein kinase mediation of the effect of muscle contraction on glucose transport. Diabetes 47:1369–1373

    CAS  PubMed  Google Scholar 

  • Hegele RA, Zinman B, Hanley AJ, Harris SB, Barrett PH, Cao H (2003) Genes, environment and Oji-Cree type 2 diabetes. Clin Biochem 36:163–170

    Article  CAS  PubMed  Google Scholar 

  • Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49:1751–1760

    CAS  PubMed  Google Scholar 

  • Hill JO, Peters JC (1998) Environmental contributions to the obesity epidemic. Science 280:1371–1374

    Article  CAS  PubMed  Google Scholar 

  • Huopio H, Shyng SL, Otonkoski T, Nichols CG (2002) K(ATP) channels and insulin secretion disorders. Am J Physiol Endocrinol Metab 283:E207-E216

    CAS  PubMed  Google Scholar 

  • Inagaki N, Gonoi T, Clement JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995) Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170

    CAS  PubMed  Google Scholar 

  • Inoue H, Ferrer J, Warren-Perry M, Zhang Y, Millns H, Turner RC, Elbein SC, Hampe CL, Suarez BK, Inagaki N, Seino S, Permutt MA (1997) Sequence variants in the pancreatic islet beta-cell inwardly rectifying K+ channel Kir6.2 (Bir) gene: identification and lack of role in Caucasian patients with NIDDM. Diabetes 46:502–507

    CAS  PubMed  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S, Ogi K, Hosoya M, Tanaka Y, Uejima H, Tanaka H, Maruyama M, Satoh R, Okubo S, Kizawa H, Komatsu H, Matsumura F, Noguchi Y, Shinohara T, Hinuma S, Fujisawa Y, Fujino M (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176

    Article  CAS  PubMed  Google Scholar 

  • John SA, Weiss JN, Xie LH, Ribalet B (2003) Molecular mechanism for ATP-dependent closure of the K+ channel Kir6.2. J Physiol (Lond)552:23–34

    Article  CAS  Google Scholar 

  • Karschin A, Brockhaus J, Ballanyi K (1998) KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J Physiol (Lond) 509 :339–346

    Article  CAS  Google Scholar 

  • Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo R, Cusi K (2003) A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes 52:2461–2474

    CAS  PubMed  Google Scholar 

  • Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA (1999) Glucose generates sub-plasma membrane ATP microdomains in single islet beta-cells. Potential role for strategically located mitochondria. J Biol Chem 274:13281–13291

    CAS  Google Scholar 

  • Knowler WC, Pettitt DJ, Saad MF, Bennett PH (1990) Diabetes mellitus in the Pima Indians: incidence, risk factors and pathogenesis. Diabetes Metab Rev 6:1–27

    CAS  PubMed  Google Scholar 

  • Kopp W (2003) High-insulinogenic nutrition—an etiologic factor for obesity and the metabolic syndrome? Metabolism 52:840–844

    Article  CAS  PubMed  Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300:1922–1926

    Article  CAS  PubMed  Google Scholar 

  • Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW (1999) 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48:1667–1671

    CAS  PubMed  Google Scholar 

  • Larsson O, Deeney JT, Branstrom R, Berggren PO, Corkey BE (1996) Activation of the ATP-sensitive K+ channel by long chain acyl-CoA. A role in modulation of pancreatic beta-cell glucose sensitivity. J Biol Chem 271:10623–10626

    Article  CAS  PubMed  Google Scholar 

  • Li L, Shi Y, Jiang C (2004) Effects of Kir6.2 polymorphism on the ATP sensitivity of skeletal muscle isoform of KATP channels. Diabetes 53 (Suppl 2):10–11

    Google Scholar 

  • Love-Gregory L, Wasson J, Lin J, Skolnick G, Suarez B, Permutt MA (2003) E23K single nucleotide polymorphism in the islet ATP-sensitive potassium channel gene (Kir6.2) contributes as much to the risk of type II diabetes in Caucasians as the PPARgamma Pro12Ala variant. Diabetologia 46:136–137

    CAS  PubMed  Google Scholar 

  • MacDonald PE, El Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB (2002) The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes 51 (Suppl 3):S434-S442

    CAS  PubMed  Google Scholar 

  • Manning Fox JE, Nichols CG, Light PE (2004) Activation of adenosine triphosphate-sensitive potassium channels by acyl coenzyme A esters involves multiple phosphatidylinositol 4,5-bisphosphate-interacting residues. Mol Endocrinol 18:679–686

    Article  PubMed  Google Scholar 

  • Matsuoka T, Matsushita K, Katayama Y, Fujita A, Inageda K, Tanemoto M, Inanobe A, Yamashita S, Matsuzawa Y, Kurachi Y (2000) C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K(+) channels. Circ Res 87:873–880

    CAS  PubMed  Google Scholar 

  • McCarthy MI (2003) Growing evidence for diabetes susceptibility genes from genome scan data. Curr Diab Rep 3:159–167

    PubMed  Google Scholar 

  • Miki T, Liss B, Minami K, Shiuchi T, Saraya A, Kashima Y, Horiuchi M, Ashcroft F, Minokoshi Y, Roeper J, Seino S (2001) ATP-sensitive K+ channels in the hypothalamus are essential for the maintenance of glucose homeostasis. Nat Neurosci 4:507–512

    CAS  PubMed  Google Scholar 

  • Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet 14:353–362

    CAS  PubMed  Google Scholar 

  • Newman B, Selby JV, King MC, Slemenda C, Fabsitz R, Friedman GD (1987) Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 30:763–768

    Article  CAS  PubMed  Google Scholar 

  • Nichols CG, Shyng SL, Nestorowicz A, Glaser B, Clement JP, Gonzalez G, Aguilar-Bryan L, Permutt MA, Bryan J (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272:1785–1787

    CAS  PubMed  Google Scholar 

  • Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T, Glumer C, Thorsteinsson B, Borch-Johnsen K, Hansen T, Pedersen O (2003) The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52:573–577

    CAS  PubMed  Google Scholar 

  • Nishida M, MacKinnon R (2002) Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111:957–965

    Article  CAS  PubMed  Google Scholar 

  • Prentki M, Corkey BE (1996) Are the beta-cell signaling molecules malonyl-CoA and cystolic long-chain acyl-CoA implicated in multiple tissue defects of obesity and NIDDM? Diabetes 45:273–283

    CAS  PubMed  Google Scholar 

  • Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor gamma in diabetes and metabolism. Trends Pharmacol Sci 25:331–336

    Article  CAS  PubMed  Google Scholar 

  • Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD (1988) Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37:1020–1024

    CAS  PubMed  Google Scholar 

  • Reimann F, Gribble FM (2002) Glucose-sensing in glucagon-like peptide-1-secreting cells. Diabetes 51:2757–2763

    CAS  PubMed  Google Scholar 

  • Renaud JM (2002) Modulation of force development by Na+, K+, Na+ K+ pump and KATP channel during muscular activity. Can J Appl Physiol 27:296–315

    CAS  PubMed  Google Scholar 

  • Riedel MJ, Boora P, Steckley D, De Vries G, Light PE (2003) Kir6.2 polymorphisms sensitize beta-cell ATP-sensitive potassium channels to activation by acyl CoAs: a possible cellular mechanism for increased susceptibility to type 2 diabetes? Diabetes 52:2630–2635

    CAS  PubMed  Google Scholar 

  • Ronner P, Naumann CM, Friel E (2001) Effects of glucose and amino acids on free ADP in betaHC9 insulin-secreting cells. Diabetes 50:291–300

    CAS  PubMed  Google Scholar 

  • Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Deriaz O (2003) Endurance Ttaining in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes 52:2874–2881

    CAS  PubMed  Google Scholar 

  • Sakura H, Ammala C, Smith PA, Gribble FM, Ashcroft FM (1995) Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett 377:338–344

    Article  CAS  PubMed  Google Scholar 

  • Sakura H, Wat N, Horton V, Millns H, Turner RC, Ashcroft FM (1996) Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in white Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 39:1233–1236

    CAS  PubMed  Google Scholar 

  • Schulze D, Krauter T, Fritzenschaft H, Soom M, Baukrowitz T (2003a) Phosphatidylinositol 4,5-bisphosphate (PIP2) modulation of ATP and pH sensitivity in Kir channels. A tale of an active and a silent PIP2 site in the N terminus. J Biol Chem 278:10500–10505

    Google Scholar 

  • Schulze D, Rapedius M, Krauter T, Baukrowitz T (2003b) Long-chain acyl-CoA esters and phosphatidylinositol phosphates modulate ATP inhibition of KATP channels by the same mechanism. J Physiol (Lond)552:357–367

    CAS  Google Scholar 

  • Schwanstecher C, Schwanstecher M (2002) Nucleotide sensitivity of pancreatic ATP-sensitive potassium channels and type 2 diabetes. Diabetes 51 (Suppl 3):S358-S362

    CAS  PubMed  Google Scholar 

  • Schwanstecher C, Meyer U, Schwanstecher M (2002a) K(IR)6.2 polymorphism predisposes to type 2 diabetes by inducing overactivity of pancreatic beta-cell ATP-sensitive K(+) channels. Diabetes 51:875–879

    CAS  PubMed  Google Scholar 

  • Schwanstecher C, Neugebauer B, Schulz M, Schwanstecher M (2002b) The common single nucleotide polymorphism E23K in K(IR)6.2 sensitizes pancreatic beta-cell ATP-sensitive potassium channels toward activation through nucleoside diphosphates. Diabetes 51 (Suppl 3):S363-S367

    CAS  PubMed  Google Scholar 

  • Seino S (2003) Physiology and pathophysiology of K(ATP) channels in the pancreas and cardiovascular system: a review. J Diabetes Complications 17:2–5

    Article  PubMed  Google Scholar 

  • Shyng S, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664

    Article  CAS  PubMed  Google Scholar 

  • Shyng SL, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1141

    Article  CAS  PubMed  Google Scholar 

  • Shyng S, Ferrigni T, Nichols CG (1997) Regulation of KATP channel activity by diazoxide and MgADP. Distinct functions of the two nucleotide binding folds of the sulfonylurea receptor. J Gen Physiol 110:643–654

    CAS  Google Scholar 

  • Sobngwi E, Boudou P, Mauvais-Jarvis F, Leblanc H, Velho G, Vexiau P, Porcher R, Hadjadj S, Pratley R, Tataranni PA, Calvo F, Gautier JF (2003) Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361:1861–1865

    Article  PubMed  Google Scholar 

  • Storgaard H, Jensen CB, Vaag AA, Volund A, Madsbad S (2003) Insulin secretion after short- and long-term low-grade free fatty acid infusion in men with increased risk of developing type 2 diabetes. Metabolism 52:885–894

    Article  CAS  PubMed  Google Scholar 

  • ’t Hart LM, Haeften TW van, Dekker JM, Bot M, Heine RJ, Maassen JA (2002) Variations in insulin secretion in carriers of the E23K variant in the KIR6.2 subunit of the ATP-sensitive K(+) channel in the beta-cell. Diabetes 51:3135–3138

    PubMed  Google Scholar 

  • Thorens B (2003) A gene knockout approach in mice to identify glucose sensors controlling glucose homeostasis. Pflugers Arch 445:482–490

    CAS  PubMed  Google Scholar 

  • Trapp S, Haider S, Jones P, Sansom MS, Ashcroft FM (2003) Identification of residues contributing to the ATP binding site of Kir6.2. EMBO J 22:2903–2912

    Article  CAS  PubMed  Google Scholar 

  • Tschritter O, Stumvoll M, Machicao F, Holzwarth M, Weisser M, Maerker E, Teigeler A, Haring H, Fritsche A (2002) The prevalent Glu23Lys polymorphism in the potassium inward rectifier 6.2 (KIR6.2) gene is associated with impaired glucagon suppression in response to hyperglycemia. Diabetes 51:2854–2860

    CAS  PubMed  Google Scholar 

  • Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183

    Article  CAS  PubMed  Google Scholar 

  • Tucker SJ, Gribble FM, Proks P, Trapp S, Ryder TJ, Haug T, Reimann F, Ashcroft FM (1998) Molecular determinants of KATP channel inhibition by ATP. EMBO J 17:3290–3296

    Article  CAS  PubMed  Google Scholar 

  • Uhde I, Toman A, Gross I, Schwanstecher C, Schwanstecher M (1999) Identification of the potassium channel opener site on sulfonylurea receptors. J Biol Chem 274:28079–28082

    Article  CAS  PubMed  Google Scholar 

  • Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    PubMed  Google Scholar 

  • Yamada Y, Kuroe A, Li Q, Someya Y, Kubota A, Ihara Y, Tsuura Y, Seino Y (2001) Genomic variation in pancreatic ion channel genes in Japanese type 2 diabetic patients. Diabetes Metab Res Rev 17:213–216

    Article  CAS  PubMed  Google Scholar 

  • Zawar C, Plant TD, Schirra C, Konnerth A, Neumcke B (1999) Cell-type specific expression of ATP-sensitive potassium channels in the rat hippocampus. J Physiol (Lond) 514:327–341

    Article  CAS  Google Scholar 

  • Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, Pucar D, Bienengraeber M, Dzeja PP, Miki T, Seino S, Alekseev AE, Terzic A (2002) Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci USA 99:13278–13283

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Light.

Additional information

This work was supported by funding from the Canadian Diabetes Association (CDA) in honor of Gordon M. Stevenson, the Alberta Heritage Foundation for Medical Research (AHFMR), and the Canadian Institutes of Health Research (CIHR). M.J.R. is supported by AHFMR and CDA Scholarships. P.E.L. received salary support as an AHFMR Scholar and CIHR New Investigator

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riedel, M.J., Steckley, D.C. & Light, P.E. Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. Hum Genet 116, 133–145 (2005). https://doi.org/10.1007/s00439-004-1216-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-004-1216-5

Navigation