, Volume 260, Issue 5, pp 480-486

Characterization of a silicon transporter gene family in Cylindrotheca fusiformis : sequences, expression analysis, and identification of homologs in other diatoms

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The transport of silicon is an integral part of the synthesis of the silicified cell wall of diatoms, yet knowledge of the number, features, and regulation of silicon transporters is lacking. We report the isolation and sequence determination of five silicon transporter (SIT) genes from Cylindrotheca fusiformis, and examine their expression patterns during cell wall synthesis. The encoded SIT amino acid sequences are highly conserved in their putative transmembrane domains. Nine conserved cysteines in this domain may account for the sensitivity of silicon uptake to sulfhydryl blocking agents. A less conserved C-terminal domain is predicted to form coiled-coil structures, suggesting that the SITs interact with other proteins. We show that SIT gene expression is induced just prior to, and during, cell wall synthesis. The genes are expressed at very different levels, and SIT1 is expressed in a different pattern from SIT 2–5. Hybridization experiments show that multiple SIT gene copies are present in all diatom species tested. From the data we infer that individual transporters play specific roles in silicon uptake, and propose that the cell regulates uptake by controlling the amount or location of each. The identification of all SIT genes in C. fusiformis will enhance our understanding of the mechanism and control of silicon transport in diatoms.