Skip to main content
Log in

Sex combs reduced (Scr) regulatory region of Drosophila revisited

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The Hox gene Sex combs reduced (Scr) is responsible for the differentiation of the labial and prothoracic segments in Drosophila. Scr is expressed in several specific tissues throughout embryonic development, following a complex path that must be coordinated by an equally complex regulatory region. Although some cis-regulatory modules (CRMs) have been identified in the Scr regulatory region (~75 kb), there has been no detailed and systematic study of the distinct regulatory elements present within this region. In this study, the Scr regulatory region was revisited with the aim of filling this gap. We focused on the identification of Initiator elements (IEs) that bind segmentation factors, Polycomb response elements (PREs) that are recognized by the Polycomb and Trithorax complexes, as well as insulators and tethering elements. To this end, we summarized all currently available information, mainly obtained from high throughput ChIP data projects. In addition, a bioinformatic analysis based on the evolutionary conservation of regulatory sequences using the software MOTEVO was performed to identify IE and PRE candidates in the Scr region. The results obtained by this combined strategy are largely consistent with the CRMs previously identified in the Scr region and help to: (i) delimit them more accurately, (ii) subdivide two of them into different independent elements, (iii) identify a new CRM, (iv) identify the composition of their binding sites and (v) better define some of their characteristics. These positive results indicate that an approach that integrates functional and bioinformatic data might be useful to characterize other regulatory regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Americo J, Whiteley M, Lesley Brown J, Fujioka M, Jaynes JB, Kassis JA (2002) A complex array of DNA-binding proteins required for pairing-sensitive silencing by a polycomb group response element from the Drosophila engrailed gene. Genetics 160:1561–1571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andrew DJ (1995) The Sex combs reduced gene of Drosophila melanogaster has multiple transcripts. Gene 152:149–155

    Article  CAS  PubMed  Google Scholar 

  • Arnold P, Erb I, Pachkov M, Molina N, Van Nimwegen E (2012) MotEvo: integrated bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Bioinformatics 28:487–494

    Article  CAS  PubMed  Google Scholar 

  • Bantignies F, Cavalli G (2011) Polycomb group proteins: repression in 3D. Trends Genet 27:454–464

    Article  CAS  PubMed  Google Scholar 

  • Belozerov VE, Majumder P, Shen P, Cai HN (2003) A novel boundary element may facilitate independent gene regulation in the Antennapedia complex of Drosophila. EMBO J 22:3113–3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman BP, Nibu Y, Pfeiffer BD, Tomancak P, Celniker SE, Levine M, Rubin GM, Eisen MB (2002) Exploiting transcription factor binding site clustering to identify cis-regulatory modules involved in pattern formation in the Drosophila genome. Proc Natl Acad Sci USA 99:757–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman BP, Pfeiffer BD, Laverty TR, Salzberg SL, Rubin GM, Eisen MB, Celniker SE (2004) Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura. Genome Biol 5:R61

    Article  PubMed  PubMed Central  Google Scholar 

  • Blastyák A, Mishra RK, Karch F (2006) Efficient and specific targeting of polycomb group proteins requires cooperative interaction between grainyhead and pleiohomeotic. Mol Cell Biol 26:1434–1444

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JL, Kassis JA (2010) Spps, a Drosophila Sp1/KLF family member, binds to PREs and is required for PRE activity late in development. Development 137:2597–2602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JL, Kassis JA (2013) Architectural and functional diversity of polycomb group response elements in Drosophila. Genetics 195:407–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JL, Mucci D, Whiteley M, Dirksen ML, Kassis JA (1998) The Drosophila polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1:1057–1064

    Article  CAS  PubMed  Google Scholar 

  • Brown JL, Fritsch C, Mueller J, Kassis JA (2003) The Drosophila pho-like gene encodes a YY1-related DNA binding protein that is redundant with pleiohomeotic in homeotic gene silencing. Development 130:285–294

    Article  CAS  PubMed  Google Scholar 

  • Calhoun VC, Levine M (2003) Long-range enhancer-promoter interactions in the Scr-Antp interval of the Drosophila Antennapedia complex. Proc Natl Acad Sci USA 100:9878–9883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calhoun VC, Stathopoulos A, Levine M (2002) Promoter-proximal tethering elements regulate enhancer-promoter specificity in the Drosophila Antennapedia complex. Proc Natl Acad Sci USA 99:9243–9247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celniker SE, Dillon LAL, Gerstein MB, Gunsalus KC, Henikoff S, Karpen GH, Kellis M, Lai EC, Lieb JD, MacAlpine DM, Micklem G, Piano F, Snyder M, Stein L, White KP, Waterston RH (2009) Unlocking the secrets of the genome. Nature 459:927–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Q, Kazemian M, Pham H, Blatti C, Celniker SE, Wolfe SA, Brodsky MH, Sinha S (2013) Computational identification of diverse mechanisms underlying transcription factor-DNA occupancy. PLoS Genet 9:e1003571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham MD, Brown JL, Kassis JA (2010) Characterization of the polycomb group response elements of the Drosophila melanogaster invected Locus. Mol Cell Biol 30:820–828

    Article  CAS  PubMed  Google Scholar 

  • Déjardin J, Rappailles A, Cuvier O, Grimaud C, Decoville M, Locker D, Cavalli G (2005) Recruitment of Drosophila Polycomb group proteins to chromatin by DSP1. Nature 434:533–538

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erokhin M, Elizar’ev P, Parshikov A, Schedl P, Georgiev P, Chetverina D (2015) Transcriptional read-through is not sufficient to induce an epigenetic switch in the silencing activity of Polycomb response elements. Proc Natl Acad Sci USA 112:14930–14935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiedler T, Rehmsmeier M (2006) jPREdictor: a versatile tool for the prediction of cis-regulatory elements. Nucleic Acids Res 34:546–550

    Article  Google Scholar 

  • Fritsch C, Brown JL, Kassis JA, Müller J (1999) The DNA-binding polycomb group protein pleiohomeotic mediates silencing of a Drosophila homeotic gene. Development 126:3905–3913.

    CAS  PubMed  Google Scholar 

  • Gindhart JG, Kaufman TC (1995) Identification of Polycomb and trithorax group responsive elements in the regulatory region of the Drosophila homeotic gene sex combs reduced. Genetics 139:797–814

    CAS  PubMed  Google Scholar 

  • Gindhart JG, King AN, Kaufman TC (1995) Characterization of the regulatory region of the Drosophila homeotic gene sex combs reduced. Genetics 139:781–795

    CAS  PubMed  Google Scholar 

  • Gorman MJ, Kaufman TC (1995) Genetic analysis of embryonic cis-acting regulatory elements of the Drosophila homeotic gene sex combs reduced. Genetics 140:557–572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC, Oliver B, Celniker SE (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479

    Article  CAS  PubMed  Google Scholar 

  • Han W, Yu Y, Altan N, Pick L (1993) Multiple proteins interact with the fushi tarazu proximal enhancer. Mol Cell Biol 13:5549–5559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hauenschild A, Ringrose L, Altmutter C, Paro R, Rehmsmeier M (2008) Evolutionary plasticity of polycomb/trithorax response elements in Drosophila species. PLoS Biol 6:e261

    Article  PubMed  PubMed Central  Google Scholar 

  • Herzog VA, Lempradl A, Trupke J, Okulski H, Altmutter C, Ruge F, Boidol B, Kubicek S, Schmauss G, Aumayr K, Ruf M, Pospisilik A, Dimond A, Senergin HB, Vargas ML, Simon JA, Ringrose L (2014) A strand-specific switch in noncoding transcription switches the function of a Polycomb/Trithorax response element. Nat Genet 46:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiromi Y, Kuroiwa A, Gehring WJ (1985) Control elements of the Drosophila segmentation gene fushi tarazu. Cell 43:603–613

    Article  CAS  PubMed  Google Scholar 

  • Hogga I, Karch F (2002) Transcription through the iab-7 cis-regulatory domain of the bithorax complex interferes with maintenance of Polycomb-mediated silencing. Development 129:4915–4922.

    CAS  Google Scholar 

  • Horard B, Tatout C, Poux S, Pirrotta V (2000) Structure of a polycomb response element and in vitro binding of polycomb group complexes containing GAGA factor. Mol Cell Biol 20:3187–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes CL, Kaufman TC (2002) Hox genes and the evolution of the arthropod body plan. Evol Dev 4:459–499

    Article  CAS  PubMed  Google Scholar 

  • Hur M-W, Laney JD, Jeon SH, Ali J, Biggin MD (2002) Zeste maintains repression of Ubx transgenes: support for a new model of Polycomb repression. Development 129:1339–1343.

    CAS  PubMed  Google Scholar 

  • Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:511–521

    Article  CAS  PubMed  Google Scholar 

  • Kassis JA, Brown JL (2013) Polycomb group response elements in Drosophila and vertebrates. Adv Genet 81:83–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman TC, Lewis R, Wakimoto B (1980) Cytogenetic analysis of chromosome 3 in Drosophila melanogaster: the homoeotic gene complex in polytene chromosome interval 84 A-B. Genetics 94:115–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman TC, Seeger MA, Olsen G (1990) Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Adv Genet 27:309–362

    Article  CAS  PubMed  Google Scholar 

  • Kuroiwa A, Kloter U, Baumgartner P, Gehring WJ (1985) Cloning of the homeotic Sex combs reduced gene in Drosophila and in situ localization of its transcripts. EMBO J 4:3757–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K, Dickson BJ, Stark A (2014) Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512:91–95

    Article  CAS  PubMed  Google Scholar 

  • Lanzuolo C, Orlando V (2012) Memories from the polycomb group proteins. Annu Rev Genet 46:561–589

    Article  CAS  PubMed  Google Scholar 

  • Lemotte PK, Kuroiwa A, Fessler L, Gehring WJ (1989) The homeotic gene sex combs reduced of Drosophila: gene structure and embryonic expression. EMBO J 8:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, MacArthur S, Bourgon R, Nix D, Pollard DA, Iyer VN, Hechmer A, Simirenko L, Stapleton M, Luengo Hendriks CL, Chu HC, Ogawa N, Inwood W, Sementchenko V, Beaton A, Weiszmann R, Celniker SE, Knowles DW, Gingeras T, Speed TP, Eisen MB, Biggin MD (2008) Transcription factors bind thousands of active and inactive regions in the Drosophila blastoderm. PLoS Biol 6:e27

    Article  PubMed  PubMed Central  Google Scholar 

  • Li HB, Ohno K, Gui H, Pirrotta V (2013) Insulators target active genes to transcription factories and polycomb-repressed genes to polycomb bodies. PLoS Genet 9:e1003436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Ma Z, Liu JK, Roy S, Patel SK, Lane DC, Cai HN (2015) An organizational hub of developmentally regulated chromatin loops in the Drosophila Antennapedia complex. Mol Cell Biol 35:4018–4029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur S, Li X-Y, Li J, Brown JB, Chu HC, Zeng L, Grondona BP, Hechmer A, Simirenko L, Keränen SVE, Knowles DW, Stapleton M, Bickel P, Biggin MD, Eisen MB (2009) Developmental roles of 21 Drosophila transcription factors are determined by quantitative differences in binding to an overlapping set of thousands of genomic regions. Genome Biol 10:R80

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda RK, Karch F (2006) The ABC of the BX-C: the bithorax complex explained. Development 133:1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Mahaffey JW, Kaufman TC (1987) Distribution of the Sex combs reduced gene products in Drosophila melanogaster. Genetics 117:51–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoudi T, Zuijderduijn LMP, Mohd-Sarip A, Verrijzer CP (2003) GAGA facilities binding of pleiohomeotic to a chromatinized Polycomb response element. Nucleic Acids Res 31:4147–4156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matzat LH, Lei EP (2014) Surviving an identity crisis: a revised view of chromatin insulators in the genomics era. Biochim Biophys Acta 1839:203–214

    Article  CAS  PubMed  Google Scholar 

  • Melnikova L, Juge F, Gruzdeva N, Mazur A, Cavalli G, Georgiev P (2004) Interaction between the GAGA factor and Mod(mdg4) proteins promotes insulator bypass in Drosophila. Proc Natl Acad Sci USA 101:14806–14811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Verrijzer P (2009) Biochemical mechanisms of gene regulation by polycomb group protein complexes. Curr Opin Genet Dev 19:150–158

    Article  PubMed  Google Scholar 

  • Nègre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG, Feng X, Ahmad K, Russell S, White RAH, Stein L, Henikoff S, Kellis M, White KP (2010) A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6:e1000814

    Article  PubMed  PubMed Central  Google Scholar 

  • Nègre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, Kheradpour P, Eaton ML, Loriaux P, Sealfon R, Li Z, Ishii H, Spokony RF, Chen J, Hwang L, Cheng C, Auburn RP, Davis MB, Domanus M, Shah PK, Morrison CA, Zieba J, Suchy S, Senderowicz L, Victorsen A, Bild NA, Grundstad AJ, Hanley D, MacAlpine DM, Mannervik M, Venken K, Bellen H, White R, Gerstein M, Russell S, Grossman RL, Ren B, Posakony JW, Kellis M, White KP (2011) A cis-regulatory map of the Drosophila genome. Nature 471:527–531

    Article  PubMed  PubMed Central  Google Scholar 

  • Obbard DJ, Maclennan J, Kim K-W, Rambaut A, O’Grady PM, Jiggins FM (2012) Estimating divergence dates and substitution rates in the Drosophila phylogeny. Mol Biol Evol 29:3459–3473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okulski H, Druck B, Bhalerao S, Ringrose L (2011) Quantitative analysis of polycomb response elements (PREs) at identical genomic locations distinguishes contributions of PRE sequence and genomic environment. Epigenetics Chromatin 4:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orsi GA, Kasinathan S, Hughes KT, Saminadin-Peter S, Henikoff S, Ahmad K (2014) High-resolution mapping defines the cooperative architecture of Polycomb response elements. Genome Res 24:809–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peel AD, Chipman AD, Akam M (2005) Arthropod segmentation: beyond the Drosophila paradigm. Nat Rev Genet 6:905–916

    Article  CAS  PubMed  Google Scholar 

  • Philip P, Boija A, Vaid R, Churcher AM, Meyers DJ, Cole PA, Mannervik M, Stenberg P (2015) CBP binding outside of promoters and enhancers in Drosophila melanogaster. Epigenetics Chromatin 8:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Pick L, Heffer A (2012) Hox gene evolution: multiple mechanisms contributing to evolutionary novelties. Ann N Y Acad Sci 1256:15–32

    Article  PubMed  Google Scholar 

  • Pick L, Schier A, Affolter M, Schmidt-Glenewinkel T, Gehring WJ (1990) Analysis of the ftz upstream element: germ layer-specific enhancers are independently autoregulated. Genes Dev 4:1224–1239

    Article  CAS  PubMed  Google Scholar 

  • Reuter R, Scott MP (1990) Expression and function of the homoeotic genes Antennapedia and Sex combs reduced in the embryonic midgut of Drosophila. Development 109:289–303

    CAS  PubMed  Google Scholar 

  • Riley PD, Carrol SB, Scott MP (1987) The expression and regulation of sex combs reduced protein in Drosophila embryos. Genes Dev 5:716–730

    Article  Google Scholar 

  • Ringrose L, Rehmsmeier M, Dura JM, Paro R (2003) Genome-wide prediction of polycomb/trithorax response elements in Drosophila melanogaster. Dev Cell 5:759–771

    Article  CAS  PubMed  Google Scholar 

  • Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L, Lin MF, Washietl S, Arshinoff BI, Ay F, Meyer PE, Robine N, Washington NL, Di Stefano L, Berezikov E, Brown CD, Candeias R, Carlson JW, Carr A, Jungreis I, Marbach D, Sealfon R, Tolstorukov MY, Will S, Alekseyenko AA, Artieri C, Booth BW, Brooks AN, Dai Q, Davis CA, Duff MO, Feng X, Gorchakov AA, Gu T, Henikoff JG, Kapranov P, Li R, MacAlpine HK, Malone J, Minoda A, Nordman J, Okamura K, Perry M, Powell SK, Riddle NC, Sakai A, Samsonova A, Sandler JE, Schwartz YB, Sher N, Spokony R, Sturgill D, van Baren M, Wan KH, Yang L, Yu C, Feingold E, Good P, Guyer M, Lowdon R, Ahmad K, Andrews J, Berger B, Brenner SE, Brent MR, Cherbas L, Elgin SCR, Gingeras TR, Grossman R, Hoskins RA, Kaufman TC, Kent W, Kuroda MI, Orr-Weaver T, Perrimon N, Pirrotta V, Posakony JW, Ren B, Russell S, Cherbas P, Graveley BR, Lewis S, Micklem G, Oliver B, Park PJ, Celniker SE, Henikoff S, Karpen GH, Lai EC, MacAlpine DM, Stein LD, White KP, Kellis M (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schier AF, Gehring WJ (1993) Analysis of a fushi tarazu autoregulatory element: multiple sequence elements contribute to enhancer activity. EMBO J 12:1111–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder MD, Pearce M, Fak J, Fan H, Unnerstall U, Emberly E, Rajewsky N, Siggia ED, Gaul U (2004) Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol 2:e271

    Article  PubMed  PubMed Central  Google Scholar 

  • Schuettengruber B, Ganapathi M, Leblanc B, Portoso M, Jaschek R, Tolhuis B, Van Lohuizen M, Tanay A, Cavalli G (2009) Functional anatomy of polycomb and trithorax chromatin landscapes in Drosophila embryos. PLoS Biol 7:e1000013

    Article  PubMed Central  Google Scholar 

  • Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol 12:799–814

    Article  CAS  PubMed  Google Scholar 

  • Schuettengruber B, Oded Elkayam N, Sexton T, Entrevan M, Stern S, Thomas A, Yaffe E, Parrinello H, Tanay A, Cavalli G (2014) Cooperativity, specificity, and evolutionary stability of polycomb targeting in Drosophila. Cell Rep 9:219–233.

    Article  CAS  PubMed  Google Scholar 

  • Starr MO, Ho MCW, Gunther EJM, Tu Y, Shur AS, Goetz SE, Borok MJ, Kang V, Drewell RA (2012) Molecular dissection of cis-regulatory modules at the Drosophila bithorax complex reveals critical transcription factor signature motifs. Dev Biol 359:290–302

    Article  Google Scholar 

  • Steffen PA, Ringrose L (2014) What are memories made of? How Polycomb and Trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 15:340–356

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas S, Li X-Y, Sabo PJ, Sandstrom R, Thurman RE, Canfield TK, Giste E, Fisher W, Hammonds A, Celniker SE, Biggin MD, Stamatoyannopoulos JA (2011) Dynamic reprogramming of chromatin accessibility during Drosophila embryo development. Genome Biol 12:R43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Topol J, Dearolf CR, Prakash K, Parker CS (1991) Synthetic oligonucleotides recreate Drosophila fushi tarazu zebra-stripe expression. Genes Dev 5:855–867

    Article  CAS  PubMed  Google Scholar 

  • Van Bortle K, Ramos E, Takenaka N, Yang J, Wahi JE, Corces VG (2012) Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains. Genome Res 22:2176–2187

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004) Hierarchical recruitment of polycomb group silencing complexes. Mol Cell 14:637–646

    Article  CAS  PubMed  Google Scholar 

  • Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng J, Kirk BD, Gou Y, Wang Q, Ma J (2012) Genome-wide polycomb target gene prediction in Drosophila melanogaster. Nucleic Acids Res 40:5848–5863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EEM (2009) Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 462:65–70

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Montserrat Aguadé for critical comments on the manuscript. This study was funded by a predoctoral fellowship from the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR), Generalitat de Catalunya, Catalonia, Spain, to JMC-M; and grants BFU2012–35168 and BFU2015-63732 from the Ministerio de Economía y Competitividad, Spain, and 2009SGR-1287 and 2014SGR-10555 from the Comissió Interdepartamental de Recerca i Innovació Tecnològica, Catalonia, Spain, to M Aguadé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Segarra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 582 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvo-Martín, J.M., Papaceit, M. & Segarra, C. Sex combs reduced (Scr) regulatory region of Drosophila revisited. Mol Genet Genomics 292, 773–787 (2017). https://doi.org/10.1007/s00438-017-1309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-017-1309-1

Keywords

Navigation