Skip to main content
Log in

GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Disease problems cause major economic losses for the aquaculture industries. In catfish, enteric septicemia of catfish (ESC), caused by the bacterial pathogen Edwardsiella ictaluri, is the leading disease problem, causing tens of millions of dollars of annual economic losses. In this study, we conducted a genome-wide association study to determine quantitative trait loci (QTL) for resistance against ESC using an interspecific hybrid system. Five hundred fish were used in the analysis and 192 phenotypic extremes were used for genotyping with the catfish 250K SNP arrays. A genomic region on linkage group (LG) 1 was found significantly associated with ESC disease resistance. In addition, two suggestively associated QTL for ESC resistance were identified on LG 12 and LG 16. The nlrc3 duplicates were identified within all the three QTL, suggesting their importance in association with the QTL. Within the significant QTL on LG 1, 16 genes with known functions in immunity were identified. Of particular interest is the nck1 gene nearby the most significantly associated SNP. Nck1 was known to function as an adaptor to facilitating the pathogenesis of enteropathogenic Escherichia coli (EPEC) in humans. E. ictaluri and EPEC pathogens belong to the same bacterial family and share many common characteristics. The fact that nck1 is mapped in the QTL and that it was significantly upregulated in channel catfish intestine after ESC challenge suggested its candidacy of being involved in resistance/susceptibility of ESC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abecasis GR, Cardon LR, Cookson WOC (2000) A general test of association for quantitative traits in nuclear families. Am J Hum Genet 66:279–292

    Article  CAS  PubMed  Google Scholar 

  • Baerwald MR, Petersen JL, Hedrick RP, Schisler GJ, May B (2011) A major effect quantitative trait locus for whirling disease resistance identified in rainbow trout (Oncorhynchus mykiss). Heredity 106:920–926

    Article  CAS  PubMed  Google Scholar 

  • Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evolution Biol 16:363–377

    Article  CAS  Google Scholar 

  • Campbell NR, LaPatra SE, Overturf K, Towner R, Narum SR (2014) Association mapping of disease resistance traits in rainbow trout using restriction site associated DNA sequencing. G3 Genes Genom Genet 4:2473–2481

    Google Scholar 

  • Castaño-Rodríguez N, Kaakoush NO, Goh K-L, Fock KM, Mitchell HM (2014) The NOD-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer: a case-control study and gene expression analyses. PLoS One 9:e98899

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa K, Lhorente JP, López ME, Bassini L, Naswa S, Deeb N, Di Genova A, Maass A, Davidson WS, Yáñez JM (2015) Genome-wide association analysis reveals loci associated with resistance against Piscirickettsia salmonis in two Atlantic salmon (Salmo salar L.) chromosomes. BMC Genom 16:854

    Article  Google Scholar 

  • Darvasi A, Soller M (1992) Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theor Appl Genet 85:353–359

    CAS  PubMed  Google Scholar 

  • Dathe K, Kjaer KW, Brehm A, Meinecke P, Nürnberg P, Neto JC, Brunoni D, Tommerup N, Ott CE, Klopocki E, Seemann P, Mundlos S (2009) Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am J Hum Genet 84:483–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duggal P, Gillanders EM, Holmes TN, Bailey-Wilson JE (2008) Establishing an adjusted p value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genom 9:516

    Article  Google Scholar 

  • Dunham RA, Smitherman RO (1984) Descriptions of major catfish species. In: Ancestry and breeding of catfish in the US. Alabama agricultural experiment station: Circular 273, pp 5–10

  • Ewanowich CA, Peppler MS (1990) Phorbol myristate acetate inhibits HeLa 229 invasion by Bordetella pertussis and other invasive bacterial pathogens. Infect Immun 58:3187–3193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, Jassal B, Jupe S, Korninger F, McKay S, Matthews L, May B, Milacic M, Rothfels K, Shamovsky V, Webber M, Weiser J, Williams M, Wu G, Stein L, Hermjakob H, D’Eustachio P (2016) The Reactome pathway knowledgebase. Nucleic Acids Res 44:D481–D487

    Article  PubMed  Google Scholar 

  • Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol R 61:136–169

    CAS  Google Scholar 

  • Fulker DW, Cherny SS, Sham PC, Hewitt JK (1999) Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet 64:259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geng X, Sha J, Liu S, Bao L, Zhang J, Wang R, Yao J, Li C, Feng J, Sun F, Sun L, Jiang C, Zhang Y, Chen A, Dunham R, Zhi D, Liu Z (2015) A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BMC Genom 16:196

    Article  Google Scholar 

  • Geng X, Liu S, Yao J, Bao L, Zhang J, Li C, Wang R, Sha J, Zeng P, Zhi D, Liu Z (2016) A genome wide association study identifies multiple regions associated with head size in catfish. G3 Genes Genom Genet. doi:10.1534/g3.116.032201

    Google Scholar 

  • Gruenheid S, DeVinney R, Bladt F, Goosney D, Gelkop S, Gish GD, Pawson T, Finlay BB (2001) Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat Cell Biol 3:856–859

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Feng C, Ma L, Song C, Wang Y, Da Y, Li H, Chen K, Ye S, Ge C, Hu X, Li N (2011) Genome-wide association study of body weight in chicken F2 resource population. PLoS One 6:e21872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawke JP, Durborow R, Thune R, Camus A (1998) ESC: enteric septicemia of catfish. Southern Regional Aquaculture Center, Stoneville

    Google Scholar 

  • Hébert P, Ainsworth AJ, Boyd B (2002) Histological enzyme and flow cytometric analysis of channel catfish intestinal tract immune cells. Dev Comp Immunol 26:53–62

    Article  PubMed  Google Scholar 

  • Hewitt EW (2003) The MHC class I antigen presentation pathway: strategies for viral immune evasion. Immunology 110:163–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houston RD, Haley CS, Hamilton A, Guy DR, Tinch AE, Taggart JB, McAndrew BJ, Bishop SC (2008) Major quantitative trait loci affect resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar). Genetics 178:1109–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Houston RD, Haley CS, Hamilton A, Guy DR, Mota-Velasco JC, Gheyas AA, Tinch AE, Taggart J, Bron J, Starkey W (2010) The susceptibility of Atlantic salmon fry to freshwater infectious pancreatic necrosis is largely explained by a major QTL. Heredity 105:318–327

    Article  CAS  PubMed  Google Scholar 

  • Howard ML, Davidson EH (2004) cis-Regulatory control circuits in development. Dev Biol 271:109–118

    Article  CAS  PubMed  Google Scholar 

  • Hu Q, Milfay D, Williams LT (1995) Binding of NCK to SOS and activation of ras-dependent gene expression. Mol Cell Biol 15:1169–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Y, Zhou T, Geng X, Liu S, Chen A, Yao J, Jiang C, Tan S, Su B, Liu Z (2016) A genome-wide association study of heat stress-associated SNPs in catfish. Anim Genet. doi:10.1111/age.12482

    Google Scholar 

  • Johansson MEV, Thomsson KA, Hansson GC (2009) Proteomic analyses of the two mucus layers of the colon barrier reveal that their main component, the Muc2 Mucin, is strongly bound to the Fcgbp protein. J Proteome Res 8:3549–3557

    Article  CAS  PubMed  Google Scholar 

  • Joshi T, Butchar J, Tridandapani S (2006) Fcγ receptor signaling in phagocytes. Int J Hematol 84:210–216

    Article  CAS  PubMed  Google Scholar 

  • Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB (1997) Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–520

    Article  CAS  PubMed  Google Scholar 

  • Kongchum P, Sandel E, Lutzky S, Hallerman EM, Hulata G, David L, Palti Y (2011) Association between IL-10a single nucleotide polymorphisms and resistance to cyprinid herpesvirus-3 infection in common carp (Cyprinus carpio). Aquaculture 315:417–421

    Article  CAS  Google Scholar 

  • Kucuktas H, Wang S, Li P, He C, Xu P, Sha Z, Liu H, Jiang Y, Baoprasertkul P, Somridhivej B, Wang Y, Abernathy J, Guo X, Liu L, Muir W, Liu Z (2009) Construction of genetic linkage maps and comparative genome analysis of catfish using gene-associated markers. Genetics 181:1649–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lettau M, Pieper J, Janssen O (2009) Nck adapter proteins: functional versatility in T cells. Cell Commun Signal 7:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhang Y, Wang R, Lu J, Nandi S, Mohanty S, Terhune J, Liu Z, Peatman E (2012) RNA-seq analysis of mucosal immune responses reveals signatures of intestinal barrier disruption and pathogen entry following Edwardsiella ictaluri infection in channel catfish, Ictalurus punctatus. Fish Shellfish Immun 32:816–827

    Article  CAS  Google Scholar 

  • Li Y, Liu S, Qin Z, Waldbieser G, Wang R, Sun L, Bao L, Danzmann RG, Dunham R, Liu Z (2015) Construction of a high-density, high-resolution genetic map and its integration with BAC-based physical map in channel catfish. DNA Res 22:39–52

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Karsi A, Li P, Cao D, Dunham R (2003) An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics 165:687–694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Zhou Z, Lu J, Sun F, Wang S, Liu H, Jiang Y, Kucuktas H, Kaltenboeck L, Peatman E, Liu Z (2011) Generation of genome-scale gene-associated SNPs in catfish for the construction of a high-density SNP array. BMC Genom 12:53

    Article  CAS  Google Scholar 

  • Liu S, Sun L, Li Y, Sun F, Jiang Y, Zhang Y, Zhang J, Feng J, Kaltenboeck L, Kucuktas H, Liu Z (2014) Development of the catfish 250K SNP array for genome-wide association studies. BMC Res Notes 7:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Vallejo RL, Palti Y, Gao G, Marancik DP, Hernandez AG, Wiens GD (2015) Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout. Front Genet 6:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu P, Wang L, Wan ZY, Ye BQ, Huang S, Wong SM, Yue GH (2016a) Mapping QTL for resistance against viral nervous necrosis disease in Asian seabass. Mar Biotechnol (NY) 18:107–116

    Article  CAS  Google Scholar 

  • Liu S, Li Y, Qin Z, Geng X, Bao L, Kaltenboeck L, Kucuktas H, Dunham R, Liu Z (2016b) High-density interspecific genetic linkage mapping provides insights into genomic incompatibility between channel catfish and blue catfish. Anim Genet 47:81–90

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, Jiang C, Sun L, Wang R, Zhang Y, Zhou T, Zeng Q, Fu Q, Gao S, Li N, Koren S, Jiang Y, Zimin A, Xu P, Phillippy AM, Geng X, Song L, Sun F, Li C, Wang X, Chen A, Jin Y, Yuan Z, Yang Y, Tan S, Peatman E, Lu J, Qin Z, Dunham R, Li Z, Sonstegard T, Feng J, Danzmann RG, Schroeder S, Scheffler B, Duke MV, Ballard L, Kucuktas H, Kaltenboeck L, Liu H, Armbruster J, Xie Y, Kirby ML, Tian Y, Flanagan ME, Mu W, Waldbieser GC (2016c) The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat Commun 7:11757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moen T, Baranski M, Sonesson AK, Kjøglum S (2009) Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genom 10:368

    Article  Google Scholar 

  • Moen T, Torgersen J, Santi N, Davidson WS, Baranski M, Odegard J, Kjoglum S, Velle B, Kent M, Lubieniecki KP, Isdal E, Lien S (2015) Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics 200:1313–1326

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman SG (1993) Bacterial vaccines for fish. Annu Rev Fish Dis 3:145–185

    Article  Google Scholar 

  • Nieto-Pelegrin E, Kenny B, Martinez-Quiles N (2014) Nck adaptors, besides promoting N-WASP mediated actin-nucleation activity at pedestals, influence the cellular levels of enteropathogenic Escherichia coli Tir effector. Cell Adhes Migr 8:404–417

    Article  Google Scholar 

  • Ninwichian P, Peatman E, Perera D, Liu S, Kucuktas H, Dunham R, Liu Z (2012) Identification of a sex-linked marker for channel catfish. Anim Genet 43:476–477

    Article  CAS  PubMed  Google Scholar 

  • Ødegård J, Baranski M, Gjerde B, Gjedrem T (2011) Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquac Res 42:103–114

    Article  Google Scholar 

  • Palti Y, Vallejo RL, Gao G, Liu S, Hernandez AG, Rexroad CE III, Wiens GD (2015) Detection and validation of QTL affecting bacterial cold water disease resistance in rainbow trout using restriction-site associated DNA sequencing. PLoS One 10:e0138435

    Article  PubMed  PubMed Central  Google Scholar 

  • Peatman E, Terhune J, Baoprasertkul P, Xu P, Nandi S, Wang S, Somridhivej B, Kucuktas H, Li P, Dunham R, Liu Z (2008) Microarray analysis of gene expression in the blue catfish liver reveals early activation of the MHC class I pathway after infection with Edwardsiella ictaluri. Mol Immunol 45:553–566

    Article  CAS  PubMed  Google Scholar 

  • Peatman E, Lange M, Zhao H, Beck BH (2015) Physiology and immunology of mucosal barriers in catfish (Ictalurus spp.). Tissue Barriers:e1068907

  • Peterson BC, Flora C, Wood M, Bosworth BG, Quiniou SM, Greenway TE, Byars TS, Wise DJ (2016) Vaccination of full-sib channel catfish families against enteric septicemia of catfish with an oral live attenuated Edwardsiella ictaluri vaccine. J World Aquac Soc 47:207–211

    Article  CAS  Google Scholar 

  • Pils S, Kopp K, Peterson L, Delgado Tascón J, Nyffenegger-Jann NJ, Hauck CR (2012) The adaptor molecule nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria. PLoS One 7:e32808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruitt KD, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501–D504

    Article  CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendran KV, Zhang J, Liu S, Kucuktas H, Wang X, Liu H, Sha Z, Terhune J, Peatman E, Liu Z (2012a) Pathogen recognition receptors in channel catfish: I. Identification, phylogeny and expression of NOD-like receptors. Dev Comp Immunol 37:77–86

    Article  CAS  PubMed  Google Scholar 

  • Rajendran KV, Zhang J, Liu S, Peatman E, Kucuktas H, Wang X, Liu H, Wood T, Terhune J, Liu Z (2012b) Pathogen recognition receptors in channel catfish: II. Identification, phylogeny and expression of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs). Dev Comp Immunol 37:381–389

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Ramilo ST, De La Herran R, Ruiz-Rejon C, Hermida M, Fernandez C, Pereiro P, Figueras A, Bouza C, Toro MA, Martinez P, Fernandez J (2014) Identification of quantitative trait loci associated with resistance to viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus): a comparison between bacterium, parasite and virus diseases. Mar Biotechnol (NY) 16:265–276

    Article  CAS  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santander J, Martin T, Loh A, Pohlenz C, Gatlin DM, Curtiss R (2013) Mechanisms of intrinsic resistance to antimicrobial peptides of Edwardsiella ictaluri and its influence on fish gut inflammation and virulence. Microbiology 159:1471–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao C, Niu Y, Rastas P, Liu Y, Xie Z, Li H, Wang L, Jiang Y, Tai S, Tian Y, Sakamoto T, Chen S (2015) Genome-wide SNP identification for the construction of a high-resolution genetic map of Japanese flounder (Paralichthys olivaceus): applications to QTL mapping of Vibrio anguillarum disease resistance and comparative genomic analysis. DNA Res 22:161–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skirpstunas RT, Baldwin TJ (2002) Edwardsiella ictaluri invasion of IEC-6, Henle 407, fathead minnow and channel catfish enteric epithelial cells. Dis Aquat Organ 51:161–167

    Article  PubMed  Google Scholar 

  • Somero GN (2005) Linking biogeography to physiology: evolutionary and acclimatory adjustments of thermal limits. Front Zool 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32:W309–W312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Liu S, Wang R, Li C, Zhang J, Liu Z (2014) Pathogen recognition receptors in channel catfish: IV. Identification, phylogeny and expression analysis of peptidoglycan recognition proteins. Dev Comp Immunol 46:291–299

    Article  CAS  PubMed  Google Scholar 

  • Thune RL, Hawke JP, Johnson MC (1994) Studies on vaccination of channel catfish, Ictalurus punctatus, against Edwardsiella ictaluri. J Appl Aquaculture 3:11–24

    Article  Google Scholar 

  • Todd EC (1997) Epidemiology of foodborne diseases: a worldwide review. World Health Stat Q 50:30–50

    CAS  PubMed  Google Scholar 

  • UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212

    Article  Google Scholar 

  • Vallejo RL, Palti Y, Liu S, Marancik DP, Wiens GD (2014) Validation of linked QTL for bacterial cold water disease resistance and spleen size on rainbow trout chromosome Omy19. Aquaculture 432:139–143

    Article  CAS  Google Scholar 

  • Veale KJ, Offenhäuser C, Murray RZ (2011) The role of the recycling endosome in regulating lamellipodia formation and macrophage migration. Commun Integr Biol 4:44–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang R, Sun L, Bao L, Zhang J, Jiang Y, Yao J, Song L, Feng J, Liu S, Liu Z (2013) Bulk segregant RNA-seq reveals expression and positional candidate genes and allele-specific expression for disease resistance against enteric septicemia of catfish. BMC Genom 14:1–18

    Article  Google Scholar 

  • Wang X, Li C, Thongda W, Luo Y, Beck B, Peatman E (2014) Characterization and mucosal responses of interleukin 17 family ligand and receptor genes in channel catfish Ictalurus punctatus. Fish Shellfish Immun 38:47–55

    Article  CAS  Google Scholar 

  • Wang X, Liu S, Jiang C, Geng X, Zhou T, Li N, Bao L, Li Y, Yao J, Yang Y, Zhong X, Jin Y, Dunham R, Liu Z (2016) Multiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfish. Mol Genet Genom. doi:10.1007/s00438-016-1256-2

    Google Scholar 

  • William RW, Terrence RT (2004) Genetics and breeding. In: Tucker CS, Hargreaves JA (eds) Biology and culture of channel catfish. Elsevier, Oxford, pp 95–128

    Google Scholar 

  • Wise DJ, Greenway TE, Byars TS, Griffin MJ, Khoo LH (2015) Oral vaccination of channel catfish against enteric septicemia of catfish using a live attenuated Edwardsiella ictaluri isolate. J Aquat Anim Health 27:135–143

    Article  CAS  PubMed  Google Scholar 

  • Yáñez JM, Houston RD, Newman S (2014) Genetics and genomics of disease resistance in salmonid species. Front Genet 5:415

    PubMed  PubMed Central  Google Scholar 

  • Yeh H-Y, Shoemaker CA, Klesius PH (2005) Evaluation of a loop-mediated isothermal amplification method for rapid detection of channel catfish Ictalurus punctatus important bacterial pathogen Edwardsiella ictaluri. J Microbiol Methods 63:36–44

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Liu S, Rajendran KV, Sun L, Zhang Y, Sun F, Kucuktas H, Liu H, Liu Z (2013) Pathogen recognition receptors in channel catfish: III Phylogeny and expression analysis of Toll-like receptors. Dev Comp Immunol 40:185–194

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This project was supported by Agriculture and Food Research Initiative Competitive Grant No. 2015-67015-22975 from the USDA National Institute of Food and Agriculture (NIFA). Tao Zhou is supported by a scholarship from the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjiang Liu.

Additional information

Communicated by J. Cerdá.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2016_1269_MOESM1_ESM.tif

Fig. S1 Manhattan plot of genome wide association analysis for ESC disease resistance. GWAS was conducted by using family based association test for quantitative trait (QFAM) (TIFF 1761 kb)

Supplementary material 2 (XLSX 10 kb)

Supplementary material 3 (XLSX 13 kb)

Supplementary material 4 (XLSX 17 kb)

Supplementary material 5 (XLSX 17 kb)

Supplementary material 6 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Liu, S., Geng, X. et al. GWAS analysis of QTL for enteric septicemia of catfish and their involved genes suggest evolutionary conservation of a molecular mechanism of disease resistance. Mol Genet Genomics 292, 231–242 (2017). https://doi.org/10.1007/s00438-016-1269-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1269-x

Keywords

Navigation