Skip to main content

Advertisement

Log in

Differentially expressed microRNAs in the corpus cavernosum from a murine model with type 2 diabetes mellitus-associated erectile dysfunction

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To better understand the molecular aetiology of type 2 diabetes mellitus-associated erectile dysfunction (T2DMED) and to provide candidates for further study of its diagnosis and treatment, this study was designed to investigate differentially expressed microRNAs (miRNAs) in the corpus cavernosum (CC) of mice with T2DMED using GeneChip array techniques (Affymetrix miRNA 4.0 Array) and to predict target genes and signalling pathways regulated by these miRNAs based on bioinformatic analysis using TargetScan, the DAIAN web platform and DAVID. In the initial screening, 21 miRNAs appeared distinctly expressed in the T2DMED group (fold change ≥3, p ≤ 0.01). Among them, the differential expression of miR-18a, miR-206, miR-122, and miR-133 were confirmed by qRT-PCR (p < 0.05 and FDR <5 %). According to bioinformatic analysis, the four miRNAs were speculated to play potential roles in the mechanisms of T2DMED via regulating 28 different genes and several pathways, including apoptosis, fibrosis, eNOS/cGMP/PKG, and vascular smooth muscle contraction processes, which mainly focused on influencing the functions of the endothelium and smooth muscle in the CC. IGF-1, as one of the target genes, was verified to decrease in the CCs of T2DMED animals via ELISA and was confirmed as the target of miR-18a or miR-206 via luciferase assay. Finally, these four miRNAs deserve further confirmation as biomarkers of T2DMED in larger studies. Additionally, miR-18a and/or miR-206 may provide new preventive/therapeutic targets for ED management by targeting IGF-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Kateb H, Mirea L, Xie X, Sun L, Liu M, Chen H, Bull SB, Boright AP, Paterson AD, DCCT/EDIC Research Group (2007) Multiple variants in vascular endothelial growth factor (VEGFA) are risk factors for time to severe retinopathy in type 1 diabetes: the DCCT/EDIC genetics study. Diabetes 56:2161–2168

    Article  CAS  PubMed  Google Scholar 

  • Back K, Islam R, Johansson GS, Chisalita SI, Arnqvist HJ (2012) Insulin and IGF1 receptors in human cardiac microvascular endothelial cells: metabolic, mitogenic and anti-inflammatory effects. J Endocrinol 215:89–96

    Article  PubMed  Google Scholar 

  • Barbery CE, Celigoi FA, Turner SD, Smith RP, Kavoussi PK, Annex BH, Lysiak JJ (2015) Alterations in microRNA expression in a murine model of diet-induced vasculogenic erectile dysfunction. J Sex Med 12:621–630

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Beaumont J, Lopez B, Hermida N, Schroen B, San Jose G, Heymans S, Valencia F, Gomez-Doblas JJ, De Teresa E, Diez J, Gonzalez A (2014) miR-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation. Clin Sci (Lond) 126:497–506

    Article  CAS  Google Scholar 

  • Bivalacqua TJ, Champion HC, Usta MF, Cellek S, Chitaley K, Webb RC, Lewis RL, Mills TM, Hellstrom WJ, Kadowitz PJ (2004) RhoA/Rho-kinase suppresses endothelial nitric oxide synthase in the penis: a mechanism for diabetes-associated erectile dysfunction. Proc Natl Acad Sci USA 101:9121–9126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castela A, Soares R, Rocha F, Medeiros R, Ribeiro R, Monteiro C, Gomes P, Vendeira P, Virag R, Costa C (2012) Differentially expressed angiogenic genes in diabetic erectile tissue—results from a microarray screening. Mol Genet Metab 105:255–262

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Yan Q, Li S, Zhou L, Yang H, Yang Y, Liu X, Wan X (2012) Expression of the tumor suppressor miR-206 is associated with cellular proliferative inhibition and impairs invasion in ERα-positive endometrioid adenocarcinoma. Cancer Lett 314:41–53

    Article  CAS  PubMed  Google Scholar 

  • Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M (2009) Down-regulation of miR-133a contribute to up-regulation of Rhoa in bronchial smooth muscle cells. Am J Respir Crit Care Med 180:713–719

    Article  CAS  PubMed  Google Scholar 

  • Chitaley K (2009) Type 1 and type 2 diabetic-erectile dysfunction: same diagnosis (ICD-9), different disease? J Sex Med 6:262–268

    Article  PubMed  Google Scholar 

  • Chitaley K, Kupelian V, Subak L, Wessells H (2009) Diabetes, obesity and erectile dysfunction: field overview and research priorities. J Urol 182:S45–S50

    Article  PubMed  PubMed Central  Google Scholar 

  • da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  • Dai LM, Huang C, Chen L, Shan G, Li ZY (2015) Altered expression of microRNAs in the response to ER stress. Sci Bull 60:202–209

    Article  CAS  Google Scholar 

  • El-Sakka AI, Lin CS, Chui RM, Dahiya R, Lue TF (1999) Effects of diabetes on nitric oxide synthase and growth factor genes and protein expression in an animal model. Int J Impot Res 11:123–132

    Article  CAS  PubMed  Google Scholar 

  • Ferreira Tojais N, Peghaire C, Franzl N, Larrieu-Lahargue F, Jaspard B, Reynaud A, Moreau C, Couffinhal T, Duplaa C, Dufourcq P (2014) Frizzled7 controls vascular permeability through the Wnt-canonical pathway and cross-talk with endothelial cell junction complexes. Cardiovasc Res 103:291–303

    Article  CAS  PubMed  Google Scholar 

  • Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A (2008) miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 48:648–656

    Article  CAS  PubMed  Google Scholar 

  • Habas R, Kato Y, He X (2001) Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–854

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Tamola J, Chitaley K (2009) Review type 2 diabetes mellitus and erectile dysfunction. J Sex Med 6:916–926

    Article  CAS  PubMed  Google Scholar 

  • Jung GW, Kwak JY, Yoon S, Yoon JH, Lue TF (1999) IGF-1 and TGF-beta2 have a key role on regeneration of nitric oxide synthase (NOS)-containing nerves after cavernous neurotomy in rats. Int J Impot Res 11:247–259

    Article  CAS  PubMed  Google Scholar 

  • Kee HJ, Kim GR, Cho SN, Kwon JS, Ahn Y, Kook H, Jeong MH (2014) MiR-18a-5p microRNA increases vascular smooth muscle cell differentiation by downregulating Syndecan4. Korean Circ J 44:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu S, Ichikawa D, Takeshita H, Morimura R, Hirajima S, Tsujiura M, Kawaguchi T, Miyamae M, Nagata H, Konishi H, Shiozaki A, Otsuji E (2014) Circulating miR-18a: a sensitive cancer screening biomarker in human cancer. In Vivo 28:293–297

    CAS  PubMed  Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim JH, Huh JY, Yoon H, Park DK, Lim JY, Kim JM, Jeon D, Ryu H, Lee SK, Kim M, Roh JK (2012) miR-206 regulates brain-derived neurotrophic factor in Alzheimer disease model. Ann Neurol 72:269–277

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ford MC, Lavik EB, Madri JA (2006) Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J Neurosci Res 84:1656–1668

    Article  CAS  PubMed  Google Scholar 

  • Li D, Hallett MA, Zhu W, Rubart M, Liu Y, Yang Z, Chen H, Haneline LS, Chan RJ, Schwartz RJ, Field LJ, Atkinson SJ, Shou W (2011) Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development 138:303–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linder AE, Leite R, Lauria K, Mills TM, Webb RC (2006) Penile erection requires association of soluble guanylyl cyclase with endothelial caveolin-1 in rat corpus cavernosum. Am J Physiol Regul Integr Comp Physiol 290:R1302–R1308

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, Olson EN (2008) microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 22:3242–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Maiorino MI, Bellastella G, Esposito K (2014) Diabetes and sexual dysfunction: current perspectives. Diabetes Metab Syndr Obes 7:95–105

    PubMed  PubMed Central  Google Scholar 

  • Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 272:15583–15586

    Article  CAS  PubMed  Google Scholar 

  • Millette E, Rauch BH, Defawe O, Kenagy RD, Daum G, Clower AW (2005) Platelet-derived growth factor-BB-induced human smooth muscle cell proliferation depends on basic FGF release and FGFR-1 activation. Circ Res 96:172–179

    Article  CAS  PubMed  Google Scholar 

  • Pan F, Xu J, Zhang Q, Qiu X, Yu W, Xia J, Chen T, Pan L, Chen Y, Dai Y (2014) Identification and characterization of the microRNA profile in aging rats with erectile dysfunction. J Sex Med 11:1646–1656

    Article  CAS  PubMed  Google Scholar 

  • Paneni F, Osto E, Costantino S, Mateescu B, Briand S, Coppolino G, Perna E, Mocharla P, Akhmedov A, Kubant R, Rohrer L, Malinski T, Camici GG, Matter CM, Mechta-Grigoriou F, Volpe M, Luscher TF, Cosentino F (2013) Deletion of the activated protein-1 transcription factor JunD induces oxidative stress and accelerates age-related endothelial dysfunction. Circulation 127:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Pu XY, Hu LQ, Wang HP, Luo YX, Wang XH (2007) Improvement in erectile dysfunction after insulin-like growth factor-1 gene therapy in diabetic rats. Asian J Androl 9:83–91

    Article  CAS  PubMed  Google Scholar 

  • Pulito C, Donzelli S, Muti P, Puzzo L, Strano S, Blandino G (2014) microRNAs and cancer metabolism reprogramming: the paradigm of metform. Ann Transl Med 2:58

    PubMed  PubMed Central  Google Scholar 

  • Qiu X, Sun C, Yu W, Lin H, Sun Z, Chen Y, Wang R, Dai Y (2012) Combined strategy of mesenchymal stem cells injection with VEGF gene therapy for the treatment of diabetes associated erectile dysfunction. J Androl 33:37–44

    Article  CAS  PubMed  Google Scholar 

  • Santibanez JF, Letamendia A, Perez-Barriocanal F, Silvestri C, Saura M, Vary CP, Lopez-Novoa JM, Attisano L, Bernabeu C (2007) Endoglin increases eNOS expression by modulating Smad2 protein levels and Smad2-dependent TGF-beta signaling. J Cell Physiol 210:456–468

    Article  CAS  PubMed  Google Scholar 

  • Shan ZX, Lin QX, Deng CY, Zhu JN, Mai LP, Liu JL, Fu YH, Liu XY, Li YX, Zhang YY, Lin SG, Yu XY (2010) miR-1/206 regulate HSP60 expression contributing to glucose-mediated apoptosis in cardiomyocytes. FEBS Lett 584:3592–3600

    Article  CAS  PubMed  Google Scholar 

  • Sweetman D, Rathjen T, Jefferson M, Wheeler G, Smith TG, Wheeler GN, Munsterberg A, Dalmay T (2006) FGF-4 signaling is involved in mir-206 expression in developing somites of chicken embryos. Dev Dyn 235:2185–2191

    Article  CAS  PubMed  Google Scholar 

  • Thorve VS, Kshirsagar AD, Vyawahare NS, Joshi VS, Ingale KG, Mohite RJ (2011) Diabetes-induced erectile dysfunction: epidemiology, pathophysiology and management. J Diabetes Complicat 25:129–136

    Article  PubMed  Google Scholar 

  • Tian H, Cao YX, Zhang XS, Liao WP, Yi YH, Lian J, Liu L, Huang HL, Liu WJ, Yin MM, Liang M, Shan G, Sun F (2013) The targeting and functions of miRNA-383 are mediated by FMRP during spermatogenesis. Cell Death Dis 4:e617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura M, Swenson ES, Gaca MD, Giordano FJ, Reiss M, Wells RG (2005) Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Mol Biol Cell 16:4214–4224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waldinger MD (2015) Psychiatric disorders and sexual dysfunction. Handb Clin Neurol 130:469–489

    Article  PubMed  Google Scholar 

  • Xu C, Lu Y, Pan Z, Chu W, Luo X, Lin H, Xiao J, Shan H, Wang Z, Yang B (2007) The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci 120:3045–3052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aixia Zhang or Qipeng Zhang.

Ethics declarations

Funding

This study was funded by Natural Science Foundation of Jiangsu Province (BK20160138), Scientific Research Project of Maternity and Child Health and Reproductive Health of Family Planning, Jiangsu Province (F201530), Key Project supported by Science and Technology development Foundation, Nanjing Medical University (2014NJMUZD053), and Nanjing science and technology project (201402024).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Additional information

Communicated by S. Hohmann.

F. Pan and J. You consider that the first two authors should be regarded as joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, F., You, J., Liu, Y. et al. Differentially expressed microRNAs in the corpus cavernosum from a murine model with type 2 diabetes mellitus-associated erectile dysfunction. Mol Genet Genomics 291, 2215–2224 (2016). https://doi.org/10.1007/s00438-016-1250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1250-8

Keywords

Navigation