Skip to main content
Log in

Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Because of the advantages of anthocyanins, the genetics and breeding of crops rich in anthocyanins has become a hot research topic. However, due to the lack of anthocyanin-related mutants, no regulatory genes have been mapped in Brassica napus. In this study, we first report the characterization of a B. napus line with purple leaves and the fine mapping and candidate screening of the BnaA.PL1 gene. The amount of anthocyanins in the purple leaf line was six times higher than that in a green leaf line. A genetic analysis indicated that the purple character was controlled by an incomplete dominant gene. Through map-based cloning, we localized the BnaA.PL1 gene to a 99-kb region at the end of B. napus chromosome A03. Transcriptional analysis of 11 genes located in the target region revealed that the expression level of only the BnAPR2 gene in seedling leaves decreased from purple to reddish green to green individuals, a finding that was consistent with the measured anthocyanin accumulation levels. Molecular cloning and sequence analysis of BnAPR2 showed that the purple individual-derived allele contained 17 variants. Markers co-segregating with BnaA.PL1 were developed from the sequence of BnAPR2 and were validated in the BC4P2 population. These results suggested that BnAPR2, which encodes adenosine 5′-phosphosulfate reductase, is likely to be a valuable candidate gene. This work may lay the foundation for the marker-assisted selection of B. napus vegetables that are rich in anthocyanins and for an improved understanding of the molecular mechanisms controlling anthocyanin accumulation in Brassica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asem ID, Imotomba R, Mazumder P, Laishram J (2015) Anthocyanin content in the black scented rice (Chakhao): its impact on human health and plant defense. Symbiosis 66:47–54

    Article  CAS  Google Scholar 

  • Berglund T, Ohlsson AB, RydstrÖm J (1993) Nicotinamide increases glutathione and anthocyanin in tissue culture of Catharanthus roseus. J Plant Physiol 141:596–600

    Article  CAS  Google Scholar 

  • Burdzinski C, Wendell DL (2007) Mapping the anthocyaninless (anl) locus in rapid-cycling Brassica rapa (RBr) to linkage group R9. BMC Genet 8:64–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Chagné D, Bianco L, Lawley C, Micheletti D, Jacobs JM (2015) Methods for the design, implementation, and analysis of illumina Infinium™ SNP assays in plants. Plant Genotyping Methods Protoc 2015:281–298

    Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chao DY, Baraniecka P, Danku J, Koprivova A, Lahner B, Luo HB, Yakubova E, Dilkes B, Kopriva S, Salt DE (2014) Variation in sulfur and selenium accumulation is controlled by naturally occurring isoforms of the key sulfur assimilation enzyme adenosine 5′-phosphosulfate reductase 2 across the Arabidopsis species range. Plant Physiol 166:1593–1608

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiu L-W, Li L (2012) Characterization of the regulatory network of BoMYB2 in controlling anthocyanin biosynthesis in purple cauliflower. Planta 236:1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Chiu L-W, Zhou X, Burke S, Wu X, Prior RL, Li L (2010) The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol 154:1470–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craker L, Wetherbee PJ (1973) Ethylene, light, and anthocyanin synthesis. Plant Physiol 51:436–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71:338–350

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJT, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • El-Kereamy A, Chervin C, Roustan JP, Cheynier V, Souquet JM, Moutounet M, Raynal J, Ford C, Latché A, Pech JC (2003) Exogenous ethylene stimulates the long-term expression of genes related to anthocyanin biosynthesis in grape berries. Physiol Plantarum 119:175–182

    Article  CAS  Google Scholar 

  • Fan G, Han Y, Gu Z, Chen D (2008) Optimizing conditions for anthocyanins extraction from purple sweet potato using response surface methodology (RSM). LWT Food Sci Technol 41:155–160

    Article  CAS  Google Scholar 

  • Fujii K, Ohmido N (2011) Stable progeny production of the amphidiploid resynthesized Brassica napus cv. Hanakkori, a newly bred vegetable. Theor Appl Genet 123:1433–1443

    Article  CAS  PubMed  Google Scholar 

  • Grant K, Carry NM, Mendoza M, Schulze J, Pilon M, Pilon-Smits EAH, Hoewyk DV (2011) Adenosine 5-phosphosulfate reductase (APR2) mutation in Arabidopsis implicates glutathione deficiency in selenate toxicity. Biochem J 438:325–335

    Article  CAS  PubMed  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Guo N, Cheng F, Wu J, Liu B, Zheng S, Liang J, Wang X (2014) Anthocyanin biosynthetic genes in Brassica rapa. BMC Genom 15:426–436

    Article  Google Scholar 

  • Guo N, Wu J, Zheng S, Cheng F, Liu B, Liang J, Cui Y, Wang X (2015) Anthocyanin profile characterization and quantitative trait locus mapping in zicaitai (Brassica rapa L. ssp. chinensis var. purpurea). Mol Breeding 35:1–11

    Article  CAS  Google Scholar 

  • Hayashi K, Matsumoto S, Tsukazaki H, Kondo T, Kubo N, Hirai M (2010) Mapping of a novel locus regulating anthocyanin pigmentation in Brassica rapa. Breeding Sci 60:76–80

    Article  CAS  Google Scholar 

  • Jiang C, Ramchiary N, Ma Y, Jin M, Feng J, Li R, Wang H, Long Y, Choi SR, Zhang C (2011) Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa. Theor Appl Genet 123:927–941

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Park S, Kikuchi S, Kwon S, Park S, Yoon U, Park D, Seol Y, Hahn J, Park S (2010) Genetic analysis of gene expression for pigmentation in Chinese cabbage (Brassica rapa). BioChip J 4:123–128

    Article  CAS  Google Scholar 

  • Kim C, Kim J, Kikuchi S, Choi J, Kim Y, Park H, Seol Y, Park D, Hahn J, Kim Y (2011) Computational identification of Chinese cabbage anthocyanin specific genes. BioChip J 5:184–192

    Article  CAS  Google Scholar 

  • Kortstee A, Khan S, Helderman C, Trindade L, Wu Y, Visser R, Brendolise C, Allan A, Schouten H, Jacobsen E (2011) Anthocyanin production as a potential visual selection marker during plant transformation. Transgenic Res 20:1253–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Yu E, Fan C, Zhang C, Fu T, Zhou Y (2012) Developmental, cytological and transcriptional analysis of autotetraploid Arabidopsis. Planta 236:579–596

    Article  CAS  PubMed  Google Scholar 

  • Lin L-Z, Sun J, Chen P, Harnly J (2011) UHPLC-PDA-ESI/HRMS/MS n analysis of anthocyanins, flavonol glycosides, and hydroxycinnamic acid derivatives in red mustard greens (Brassica juncea Coss variety). J Agric Food Chem 59:12059–12072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP Version 3.0: a tutorial and reference manual. A Whitehead Institute for Biomedical Research Technical Report, 3rd edn

  • Littell RC, Stroup WW, Milliken GA, Wolfinger RD, Schabenberger O (2006) SAS for mixed models. SAS Institute. Inc, Cary, p 814

    Google Scholar 

  • Liu J, Huang S, Sun M, Liu S, Liu Y, Wang W, Zhang X, Wang H, Hua W (2012) An improved allele-specific PCR primer design method for SNP marker analysis and its application. Plant Methods 8:34–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu G, Yang G, Fu T (2004) Molecular mapping of a dominant genic male sterility gene Ms in rapeseed (Brassica napus). Plant Breeding 123:262–265

    Article  CAS  Google Scholar 

  • Luo Y, Du D, Fu G, Xu L, Li X, Xing X, Yao Y, Zhang X, Zhao Z, Liu H (2011) Inheritance of leaf color and sequence-related amplified polymorphic (SRAP) molecular markers linked to the leaf color gene in Brassica juncea. AFR Jl Biotechnol 10:14724–14730

    CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Biol 47:127–158

    Article  CAS  Google Scholar 

  • Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moons A (2005) Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm 72:155–202

    Article  CAS  PubMed  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA, Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabavi S, Habtemariam S, Daglia M, Shafighi N, Barber A, Nabavi S (2015) Anthocyanins as a potential therapy for diabetic retinopathy. Curr Med Chem 22:51–58

    Article  CAS  PubMed  Google Scholar 

  • Nagaharu U (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Petroni K, Tonelli C (2011) Recent advances on the regulation of anthocyanin synthesis in reproductive organs. Plant Sci 181:219–229

    Article  CAS  PubMed  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Perret D, Villeger M-J, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111:1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Podsędek A (2007) Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT Food Sci and Technol 40:1–11

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sun S, Liu B, Wang H, Deng J, Liao Y, Wang Q, Cheng F, Wang X, Wu J (2011) A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly. BMC Genom 12:239–247

    Article  Google Scholar 

  • Wang W, Zhang D, Yu S, Liu J, Wang D, Zhang F, Yu Y, Zhao X, Lu G, Su T (2014) Mapping the BrPur gene for purple leaf color on linkage group A03 of Brassica rapa. Euphytica 199:293–302

    Article  CAS  Google Scholar 

  • Yi B, Chen Y, Lei S, Tu J, Fu T (2006) Fine mapping of the recessive genic male-sterile gene (Bnms1) in Brassica napus L. Theor Appl Genet 113:643–650

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Chiu L-W, Li L (2009) Transcriptional regulation of anthocyanin biosynthesis in red cabbage. Planta 230:1141–1153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financed by the Program of Introducing Talents of Discipline to Universities in China (the 111 Project No. B14032), the Program for Modern Agricultural Industrial Technology System (nycytx-00501), the National Support Program (2011BAD35B04), the Hi-Tech Research and Development Program of China (2011AA10A104), and the Science and Technology Projects of Shaoguan (2013CXY/C13, 2014CX/N323).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhu, L., Yuan, G. et al. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L.. Mol Genet Genomics 291, 1523–1534 (2016). https://doi.org/10.1007/s00438-016-1199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-016-1199-7

Keywords

Navigation