Skip to main content
Log in

Calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in tomato: genome-wide identification and functional analyses in disease resistance

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Calcium-dependent protein kinases (CDPKs) and CDPK-related kinases (CRKs) play multiple roles in plant. Nevertheless, genome-wide identification of these two families is limited to several plant species, and role of CRKs in disease resistance remains unclear. In this study, we identified the CDPK and CRK gene families in genome of the economically important crop tomato (Solanum lycopersicum L.) and analyzed their function in resistance to various pathogens. Twenty-nine CDPK and six CRK genes were identified in tomato genome. Both SlCDPK and SlCRK proteins harbored an STKc_CAMK type protein kinase domain, while only SlCDPKs contained EF-hand type Ca2+ binding domain(s). Phylogenetic analysis revealed that plant CRK family diverged early from CDPKs, and shared a common ancestor gene with subgroup IV CDPKs. Subgroup IV SlCDPK proteins were basic and their genes contained 11 introns, which were distinguished from other subgroups but similar to CRKs. Subgroup I SlCDPKs generally did not carry an N-terminal myristoylation motif while those of the remaining subgroups and SlCRKs universally did. SlCDPK and SlCRK genes were differently responsive to pathogenic stimuli. Furthermore, silencing analyses demonstrated that SlCDPK18 and SlCDPK10 positively regulated nonhost resistance to Xanthomonas oryzae pv. oryzae and host resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, respectively, while SlCRK6 positively regulated resistance to both Pst DC3000 and Sclerotinia sclerotiorum in tomato. In conclusion, CRKs apparently evolved from CDPK lineage, SlCDPK and SlCRK genes regulate a wide range of resistance and SlCRK6 is the first CRK gene proved to function in plant disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Asano T, Tanaka N, Yang G, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36

    Article  CAS  PubMed  Google Scholar 

  • Bologna G, Yvon C, Duvaud S, Veuthey AL (2004) N-terminal myristoylation predictions by ensembles of neural networks. Proteomics 4:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18:30–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boudsocq M, Willmann MR, McCormack M, Lee H, Shan L, He P, Bush J, Cheng SH, Sheen J (2010) Differential innate immune signalling via Ca2+ sensor protein kinases. Nature 464:418–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai X, Wang C, Xu Y, Xu Q, Zheng Z, Zhou X (2007) Efficient gene silencing induction in tomato by a viral satellite DNA vector. Virus Res 125:169–175

    Article  CAS  PubMed  Google Scholar 

  • Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a Calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165:688–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng WS, Xu QF, Li F, Xu YP, Cai XZ (2012) Establishment of a suitable control vector for Tobacco rattle virus-induced gene silencing analysis in Nicotiana benthamiana. J Zhejiang Univ (Agric Life Sci) 38:10–20

    CAS  Google Scholar 

  • Coca M, San Segundo B (2010) AtCPK1 calcium-dependent protein kinase mediates pathogen resistance in Arabidopsis. Plant J 63:526–540

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri S, Di Fiore PP (2002) The Eps15 homology (EH) domain. FEBS Lett 513:24–29

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Chen X, Lin W, Chen S, Lu D, Niu Y, Li L, Cheng C, McCormack M, Sheen J (2013) Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases. PLoS Pathog 9:e1003127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo A, Zhu Q, Chen X, Luo J (2007) GSDS: a gene structure display server. Yi chuan 29:1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Hamel LP, Sheen J, Séguin A (2014) Ancient signals: comparative genomics of green plant CDPKs. Trends Plant Sci 19:79–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmon AC, Gribskov M, Harper JF (2000) CDPKs–a kinase for every Ca2+ signal? Trends Plant Sci 5:154–159

    Article  CAS  PubMed  Google Scholar 

  • Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signalling connection. Nat Rev Mol Cell Biol 6:555–566

    Article  CAS  PubMed  Google Scholar 

  • Harper JF, Breton G, Harmon A (2004) Decoding Ca2+ signals through plant protein kinases. Annu Rev Plant Biol 55:263–288

    Article  CAS  PubMed  Google Scholar 

  • Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huttner IG, Strahl T, Osawa M, King DS, Ames JB, Thorner J (2003) Molecular interactions of yeast frequenin (Frq1) with the phosphatidylinositol 4-kinase isoform, Pik1. J Biol Chem 278:4862–4874

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Kamiyoshihara Y, Iwata M, Fukaya T, Tatsuki M, Mori H (2010) Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J 64:140–150

    CAS  PubMed  Google Scholar 

  • Kim H-J, Chen C, Kabbage M, Dickman MB (2011) Identification and characterization of Sclerotinia sclerotiorum NADPH oxidases. Appl Environ Microbiol 77(21):7721–7729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclercq J, Ranty B, Sanchez-Ballesta MT, Li ZG, Jones B, Jauneau A, Pech JC, Latche A, Ranjeva R, Bouzayen M (2005) Molecular and biochemical characterization of LeCRK1, a ripening-associated tomato CDPK-related kinase. J Exp Bot 56:25–35

    CAS  PubMed  Google Scholar 

  • Li RJ, Hua W, Lu YT (2006) Arabidopsis cytosolic glutamine synthetase AtGLN1;1 is a potential substrate of AtCRK3 involved in leaf senescence. Biochem Biophys Res Commun 342:119–126

    Article  CAS  PubMed  Google Scholar 

  • Li AL, Zhu YF, Tan XM, Wang X, Wei B, Guo HZ, Zhang ZL, Chen XB, Zhao GY, Kong XY (2008) Evolutionary and functional study of the CDPK gene family in wheat (Triticum aestivum L.). Plant Mol Biol 66:429–443

    Article  CAS  PubMed  Google Scholar 

  • Liu HT, Gao F, Li GL, Han JL, Liu DL, Sun DY, Zhou RG (2008) The calmodulin-binding protein kinase 3 is part of heat-shock signal transduction in Arabidopsis thaliana. Plant J 55:760–773

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li W, He Q, Daud MK, Chen J, Zhu S (2014) Genome-wide survey and expression analysis of calcium-dependent protein kinase in Gossypium raimondii. PLoS One 9:e98189

    Article  PubMed  PubMed Central  Google Scholar 

  • Ludwig AA, Romeis T, Jones JD (2004) CDPK-mediated signalling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  CAS  PubMed  Google Scholar 

  • Ludwig AA, Saitoh H, Felix G, Freymark G, Miersch O, Wasternack C, Boller T, Jones JD, Romeis T (2005) Ethylene-mediated cross-talk between calcium-dependent protein kinase and MAPK signaling controls stress responses in plants. Proc Natl Acad Sci USA 102:10736–10741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monaghan J, Matschi S, Shorinola O, Rovenich H, Matei A, Segonzac C, Malinovsky FG, Rathjen JP, MacLean D, Romeis T (2014) The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover. Cell Host Microbe 16:605–615

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Agarwal P, Arora R, Kapoor S, Tyagi AK (2007) Expression analysis of calcium-dependent protein kinase gene family during reproductive development and abiotic stress conditions in rice (Oryza sativa L. ssp. indica). Mol Genet Genomics 278:493–505

    Article  CAS  PubMed  Google Scholar 

  • Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigo G, Ayaydin F, Tietz O, Zsigmond L, Kovacs H, Pay A, Salchert K, Darula Z, Medzihradszky KF, Szabados L, Palme K, Koncz C, Cseplo A (2013) Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25:1592–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romeis T, Herde M (2014) From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Curr Opin Plant Biol 20:1–10

    Article  CAS  PubMed  Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J 20:5556–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saand MA, Xu YP, Li W, Wang JP, Cai XZ (2015) Cyclic nucleotide gated channel gene family in tomato:genome-wide identification and functional analyses in disease resistance. Front Plant Sci 6:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(suppl.):S401–S417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao XC, Lu YT (2013) Loss of AtCRK1 gene function in Arabidopsis thaliana decreases tolerance to salt. J Plant Biol 56:306–314

    Article  CAS  Google Scholar 

  • Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM (2014) Calcium-dependent protein kinases in plants: evolution, expression and function. Plant Cell Physiol 55:551–569

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liang SP, Xie QG, Lu YT (2004) Characterization of a calmodulin-regulated Ca2+-dependent-protein-kinase-related protein kinase, AtCRK1, from Arabidopsis. Biochem J 383:73–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Cai X, Wang X, Zheng Z (2006) Optimisation of tobacco rattle virus-induced gene silencing in Arabidopsis. Funct Plant Biol 33:347–355

    Article  CAS  Google Scholar 

  • Xie K, Chen J, Wang Q, Yang Y (2014) Direct phosphorylation and activation of a mitogen-activated protein kinase by a calcium-dependent protein kinase in rice. Plant Cell 26:3077–3089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XS, Choi JH (2001) Molecular evolution of calmodulin-like domain protein kinases (CDPKs) in plants and protists. J Mol Evol 53:214–224

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu WZ, Zhang Y, Deng M, Niu F, Yang B, Wang X, Wang B, Liang W, Deyholos MK (2014) Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.). BMC Genom 15:211

    Article  Google Scholar 

  • Zhao Y, Liu W, Xu YP, Cao JY, Braam J, Cai XZ (2013) Genome-wide identification and functional analyses of calmodulin genes in Solanaceous species. BMC Plant Biol 13:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Lan W, Jiang Y, Fang W, Luan S (2013) A calcium-dependent protein kinase interacts with and activates a calcium channel to regulate pollen tube growth. Mol Plant 7:369–376

    Article  PubMed  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo R, Hu R, Chai G, Xu M, Qi G, Kong Y, Zhou G (2013) Genome-wide identification, classification, and expression analysis of CDPK and its closely related gene families in poplar (Populus trichocarpa). Mol Biol Rep 40:2645–2662

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Zhong Cai.

Ethics declarations

Funding

This study was funded by the Genetically Modified Organisms Breeding Major Projects (no. 2014ZX0800905B), the Special Fund for Agro-scientific Research in the Public Interest (no. 201103016), the Program for Changjiang Scholars and Innovative Research Team in University (no. IRT0943) and the SRFDP (no. 20110101110092).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by C. Gebhardt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JP., Xu, YP., Munyampundu, JP. et al. Calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in tomato: genome-wide identification and functional analyses in disease resistance. Mol Genet Genomics 291, 661–676 (2016). https://doi.org/10.1007/s00438-015-1137-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1137-0

Keywords

Navigation