Skip to main content
Log in

A low-pungency S3212 genotype of Capsicum frutescens caused by a mutation in the putative aminotransferase (p-AMT) gene

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The purpose of this study was to identify the genetic mechanism underlying capsinoid biosynthesis in S3212, a low-pungency genotype of Capsicum frutescens. Screening of C. frutescens accessions for capsaicinoid and capsiate contents by high-performance liquid chromatography revealed that low-pungency S3212 contained high levels of capsiate but no capsaicin. Comparison of DNA coding sequences of pungent (T1 and Bird Eye) and low-pungency (S3212) genotypes uncovered a significant 12-bp deletion mutation in exon 7 of the p-AMT gene of S3212. In addition, p-AMT gene transcript levels in placental tissue were positively correlated with the degree of pungency. S3212, the low-pungency genotype, exhibited no significant p-AMT transcript levels, whereas T1, one of the pungent genotypes, displayed high transcript levels of this gene. We therefore conclude that the deletion mutation in the p-AMT gene is related to the loss of pungency in placental tissue and has given rise to the low-pungency S3212 C. frutescens genotype. C. frutescens S3212 represents a good natural source of capsinoids. Finally, our basic characterization of the uncovered p-AMT gene mutation should contribute to future studies of capsinoid biosynthesis in Capsicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aza-Gonzalez C, Nunez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.). Plant Cell Rep 30:695–706

    Article  CAS  PubMed  Google Scholar 

  • Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu KD, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and quantitative trait loci analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86

    Article  CAS  PubMed  Google Scholar 

  • Han K, Jeong HJ, Sung J, Keum YS, Cho MC, Kim JH, Kwon JK, Kim BD, Kang BC (2013) Biosynthesis of capsinoid is controlled by the Pun1 locus in pepper. Mol Breed 31:537–548

    Article  CAS  Google Scholar 

  • Haramizu S, Kawabata F, Masuda Y, Ohnuki K, Watanabe T, Yazawa S, Fushiki T (2011) Capsinoids, non-pungent capsaicin analogs, reduce body fat accumulation without weight rebound unlike dietary restriction in mice. Biosci Biotechnol Biochem 75:95–99

    Article  CAS  PubMed  Google Scholar 

  • Iwai K, Suzuki T, Fujiwake H (1979) Formation and accumulation of pungent principle of hot pepper fruits, capsaicin and its analogs, in Capsicum annuum var. annuum cv. Karayatsubusa at different growth-stages after flowering. Agric Biol Chem 43:2493–2498

    Article  CAS  Google Scholar 

  • Kawabata F, Inoue N, Yazawa S, Kawada T, Inoue K, Fushiki T (2006) Effects of CH-19 Sweet, a non-pungent cultivar of red pepper, in decreasing the body weight and suppressing body fat accumulation by sympathetic nerve activation in humans. Biosci Biotechnol Biochem 70:2824–2835

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum-Titze P, Mueller-Seitz E, Petz M (2002) Pungency in paprika (Capsicum annuum). 1. Decrease in capsaicinoids content following cellular disruption. J Agric Food Chem 50:1260–1263

    Article  CAS  PubMed  Google Scholar 

  • Lang YQ, Kisaka H, Sugiyama R, Nomura K, Morita A, Watanabe T, Tanaka Y, Yazawa S, Miwa T (2009) Functional loss of pAMT results in biosynthesis of capsinoids, capsaicinoid analogs, in Capsicum annuum cv. CH-19 Sweet. Plant J 59:953–961

    Article  CAS  PubMed  Google Scholar 

  • Luo XJ, Peng J, Li YJ (2011) Recent advances in the study on capsaicinoids and capsinoids. Eur J Pharmacol 650:1–7

    Article  CAS  PubMed  Google Scholar 

  • Macho A, Lucena C, Sancho R, Daddario N, Minassi A, Munoz E, Appendino G (2003) Non-pungent capsaicinoids from sweet pepper—synthesis and evaluation of the chemopreventive and anticancer potential. Eur J Nutr 42:2–9

    Article  CAS  PubMed  Google Scholar 

  • Onuki K, Haramizu S, Oki K, Watanabe T, Yazawa S, Fushiki T (2011) Administration of capsiate, a non-pungent capsaicin analog, promotes energy metabolism and suppresses body fat accumulation in mice. Biosci Biotechnol Biochem 65:2735–2740

    Article  Google Scholar 

  • Pyun BJ, Choi S, Lee Y, Kim TW, Min JK, Kim Y, Kim BD, Kim JH, Kim TY, Kim YM, Kwon YG (2008) Capsiate, a nonpungent capsaicin-like compound, inhibits angiogenesis and vascular permeability via a direct inhibition of Src kinase activity. Cancer Res 68:227–235

    Article  CAS  PubMed  Google Scholar 

  • Reinbach HC, Smeets A, Martinussen T, Moller P, Westerterp-Plantenga MS (2009) Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance. Clin Nutr 28:260–265

    Article  CAS  PubMed  Google Scholar 

  • Rosa A, Deiana M, Casu V, Paccagnini S, Appendino G, Ballero M, Dessi MA (2002) Antioxidant activity of capsinoids. J Agric Food Chem 50:7396–7401

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Saritnum O, Minami M, Matsushima K, Minamiyama Y, Hirai M, Baba T, Bansho H, Nemoto K (2008) Inheritance of few pungent trait in chili pepper ‘S3212’ (Capsicum frutescens). Hort J 77:265–269

    Google Scholar 

  • Stewart C Jr, Kang B, Mazourek M, Liu K, Moore SL, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hosokawa M, Otsu K, Watanabe T, Yazawa S (2009) Assessment of capsiconinoid composition, nonpungent capsaicinoid analogues, in Capsicum cultivars. J Agric Food Chem 57:5407–5412

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010a) Newly mutated putative-aminotransferase in nonpungent pepper (Capsicum annuum) results in biosynthesis of capsinoids, capsaicinoid analogues. J Agric Food Chem 58:1761–1767

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Hosokawa M, Miwa T, Watanabe T, Yazawa S (2010b) Novel loss- of-function putative aminotransferase alleles cause biosynthesis of capsinoids, non-pungent capsaicinoid analogues, in mildly pungent chili peppers (Capsicum chinense). J Agric Food Chem 58:11762–11767

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Dr. Yoshiyuki Tanaka (Okayama University) for helpful comments on this manuscript. This research was supported by MEXT Project ‘Basic research for creation of agricultural innovation by cooperation between the faculty of technology and the faculty of agriculture, Shinshu University’ and Shimizu Sumio Research Fund, Shinshu Foundation for Promotion of Agricultural and Forest Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Matsushima.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YJ., Nishikawa, T., Minami, M. et al. A low-pungency S3212 genotype of Capsicum frutescens caused by a mutation in the putative aminotransferase (p-AMT) gene. Mol Genet Genomics 290, 2217–2224 (2015). https://doi.org/10.1007/s00438-015-1071-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1071-1

Keywords

Navigation