Skip to main content
Log in

De novo transcriptome assembly and the identification of gene-associated single-nucleotide polymorphism markers in Asian and American ginseng roots

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

We performed de novo transcriptome sequencing for Panax ginseng and Panax quinquefolius accessions using the 454 GS FLX Titanium System and discovered annotation-based genome-wide single-nucleotide polymorphism (SNPs) using next-generation ginseng transcriptome data without reference genome sequence. The comprehensive transcriptome characterization with the mature roots of four ginseng accessions generated 297,170 reads for ‘Cheonryang’ cultivar, 305,673 reads for ‘Yunpoong’ cultivar, 311,861 reads for the G03080 breeding line, and 308,313 reads for P. quinquefolius. In transcriptome assembly, the lengths of the sample read were 156.42 Mb for ‘Cheonryang’, 161.95 Mb for ‘Yunpoong’, 165.07 Mb for G03080 breeding line, and 166.48 Mb for P. quinquefolius. A total of 97 primer pairs were designed with the homozygous SNP presented in all four accessions. SNP genotyping using high-resolution melting (HRM) analysis was performed to validate the putative SNP markers of 97 primer pairs. Out of the 73 primer pairs, 73 primer pairs amplified the target sequence and 34 primer pairs showed polymorphic melting curves in samples from 11 P. ginseng cultivars and one P. quinquefolius accession. Among the 34 polymorphic HRM-SNP primers, four primers were useful to distinguish ginseng cultivars. In the present study, we demonstrated that de novo transcriptome assembly and mapping analyses are useful in providing four HRM-SNP primer pairs that reliably show a high degree of polymorphism among ginseng cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amador V, Monte E, Garcı́a-Martı́nez JL, Prat S (2001) Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell 106:343–354

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Santos-Rosa MJ, Shirasu K (2001) The U-box protein family in plants. Trends Plant Sci 6:354–358

    Article  CAS  PubMed  Google Scholar 

  • Bajgain P, Richardson BA, Price JC, Cronn RC, Udall JA (2011) Transcriptome characterization and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata). BMC Genom 12:370

    Article  CAS  Google Scholar 

  • Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51:910–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broders KD, Woeste KE, SanMiguel PJ, Westerman RP, Boland GJ (2011) Discovery of single-nucleotide polymorphisms (SNPs) in the uncharacterized genome of the ascomycete Ophiognomonia clavigignenti-juglandacearum from 454 sequence data. Mol Ecol Resour 11:693–702

    Article  CAS  PubMed  Google Scholar 

  • Bundock PC, Eliott FG, Ablett G, Benson AD, Casu RE, Aitken KS, Henry RJ (2009) Targeted single nucleotide polymorphism (SNP) discovery in a highly polyploid plant species using 454 sequencing. Plant Biotechnol J 7:347–354

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS (2008) Development of a set of SNP markers present in expressed genes of the apple. Genomics 92:353–358

    Article  PubMed  Google Scholar 

  • Cheng Y, Zhang JT (2005) Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 26:143–149

    Article  CAS  PubMed  Google Scholar 

  • Cheung F, Haas BJ, Goldberg SMD, May GD, Xiao Y, Town CD (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. BMC Genomics 7:272–282

    Article  PubMed Central  PubMed  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Ganopoulos I, Argiriou A, Tsaftaris A (2011) Microsatellite high resolution melting (SSR-HRM) analysis for authenticity testing of protected designation of origin (PDO) sweet cherry products. Food Control 22:532–541

    Article  CAS  Google Scholar 

  • Ganopoulos I, Madesis P, Darzentas N, Argiriou A, Tsaftaris A (2012) Barcode high resolution melting (Bar-HRM) analysis for detection and quantification of PDO “Fava Santorinis”(Lathyrus clymenum) adulterants. Food Chem 133:505–512

    Article  CAS  PubMed  Google Scholar 

  • Garvin MR, Saitoh K, Gharrett AJ (2010) Application of single nucleotide polymorphisms to non-model species: a technical review. Mol Ecol Resour 10:915–934

    Article  CAS  PubMed  Google Scholar 

  • Gebert M, Dresselhaus T, Sprunck S (2008) F-actin organization and pollen tube tip growth in Arabidopsis are dependent on the gametophyte-specific Armadillo repeat protein ARO1. Plant Cell Online 20:2798–2814

    Article  CAS  Google Scholar 

  • Geraldes A, DiFazio SP, Slavov GT, Ranjan P, Muchero W, Hannemann J, Gunter LE, Wymore AM, Grassa CJ, Farzaneh N, Porth I, McKown AD, Skyba O, Li E, Fujita M, Klápště J, Martin J, Schackwitz W, Pennacchio C, Rokhsar D, Friedmann MC, Wasteneys GO, Guy RD, El-Kassaby YA, Mansfield SD, Cronk QCB, Ehlting J, Douglas CJ, Tuskan GA (2013) A 34 K SNP genotyping array for Populus trichocarpa: design, application to the study of natural populations and transferability to other Populus species. Mol Ecol Resour 13:306–323

    Article  CAS  PubMed  Google Scholar 

  • Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  PubMed  Google Scholar 

  • Graham IA, Besser K, Blumer S, Branigan CA, Czechowski T, Elias L, Guterman I, Harvey D, Isaac PG, Khan AM (2010) The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science 327:328–331

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann M, Hurlebaus J, Weilke C (2007) Novel methods for high-performance melting curve analysis using the LightCycler® 480 system. Biochemica 1:17–19

  • Hu SY (1976) The genus Panax (ginseng) in Chinese medicine. Econ Bot 30:11–28

    Article  Google Scholar 

  • Hyun DY (2012) Screening method for salinity tolerance in Panax ginseng C. A. Meyer. Korea Patent 10-1128911

  • Jaakola L, Suokas M, Häggman H (2010) Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem 123:494–500

    Article  CAS  Google Scholar 

  • Jo IH, Bang KH, Kim YC, Lee JW, Seo AY, Seong BJ, Kim HH, Kim DH, Cha SW, Cho YG, Kim HS (2011) Rapid identification of ginseng cultivars (Panax ginseng Meyer) using novel SNP-based probes. J Ginseng Res 35:504–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Joo SS, Won TJ (2005) Reciprocal activity of ginsenosides in the production of proinflammatory repertoire, and their potential roles in neuroprotection in vitro. Planta Med 71:476–481

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci USA 101:13374–13379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim SH, Park KS (2003) Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol Res 48:511–513

    Article  CAS  PubMed  Google Scholar 

  • Kim OT, Bang KH, In DS, Lee JW, Kim YC, Shin YS, Hyun DY, Lee SS, Cha SW, Sung NS (2007) Molecular authentication of ginseng cultivars by comparison of internal transcribed spacer and 5.8S rDNA sequences. Plant Biotechnol Rep 1:163–167

    Article  Google Scholar 

  • Koepke T, Schaeffer S, Krishnan V, Jiwan D, Harper A, Whiting M, Oraguzie N, Dhingra A (2012) Rapid gene-based SNP and haplotype marker development in non-model eukaryotes using 3′UTR sequencing. BMC Genomics 13:18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai E, Riley J, Purvis I, Roses A (1998) A 4-Mb high-density single nucleotide polymorphism-based map around human APOE. Genomics 54:31–38

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Bang KH, Kim YC, Seo AY, Jo IH, Lee JH, Kim OT, Hyun DY, Cha SW, Cho JH (2012) CAPS markers using mitochondrial consensus primers for molecular identification of Panax species and Korean ginseng cultivars (Panax ginseng C. A. Meyer). Mol Biol Rep 39:729–736

    Article  CAS  PubMed  Google Scholar 

  • Loridon K, Burgarella C, Chantret N, Martins F, Gouzy J, Prospéri J-M, Ronfort J (2013) Single-nucleotide polymorphism discovery and diversity in the model legume Medicago truncatula. Mol Ecol Resour 13:84–95

    Article  CAS  PubMed  Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    Article  CAS  PubMed  Google Scholar 

  • Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M (2008) High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome. BMC Genomics 9:312

    Article  PubMed Central  PubMed  Google Scholar 

  • Park CK, Jeon BS, Yang JW (2003) The chemical components of Korean ginseng. Food Ind Nutr 8:10–23

    Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Robertson T, Bibby S, O’Rourke D, Belfiore T, Agnew-Crumpton R, Noormohammadi AH (2010) Identification of chlamydial species in crocodiles and chickens by PCR-HRM curve analysis. Vet Microbiol 145:373–379

    Article  CAS  PubMed  Google Scholar 

  • Seeb JE, Carvalho G, Hauser L, Naish K, Roberts S, Seeb LW (2011) Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol Ecol Resour 11:1–8

    Article  PubMed  Google Scholar 

  • Shin HR, Kim JY, Yun TK, Morgan G, Vainio H (2000) The cancer-preventive potential of Panax ginseng: a review of human and experimental evidence. Cancer Causes Control 11:565–576

    Article  CAS  PubMed  Google Scholar 

  • Stone SL, Anderson EM, Mullen RT, Goring DR (2003) ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible Brassica pollen. Plant Cell Online 15:885–898

    Article  Google Scholar 

  • Sun H, Wang H, Kwon WS, Kim YJ, In JG, Yang DC (2011) A simple and rapid technique for the authentication of the ginseng cultivar, Yunpoong, using an SNP marker in a large sample of ginseng leaves. Gene 487:75–79

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Wang LCH, Lee TF (2000) Effect of ginseng saponins on cold tolerance in young and elderly rats. Planta Med 66:144–147

    Article  CAS  PubMed  Google Scholar 

  • Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Sun H, Kwon WS, Jin H, Yang DC (2009) Molecular identification of the Korean ginseng cultivar “Chunpoong” using the mitochondrial nad7 intron 4 region. Mitochondrial DNA 20:41–45

    Article  PubMed  Google Scholar 

  • Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49:853–860

    Article  CAS  PubMed  Google Scholar 

  • Wu SB, Wirthensohn MG, Hunt P, Gibson JP, Sedgley M (2008) High resolution melting analysis of almond SNPs derived from ESTs. Theor Appl Genet 118:1–14

    Article  CAS  PubMed  Google Scholar 

  • Xie JT, Mehendale SR, Li X, Quigg R, Wang X, Wang C-Z, Wu JA, Aung HH, A Rue P, Bell GI (2005) Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim Biophys Acta 1740:319–325

    Article  CAS  PubMed  Google Scholar 

  • Yun TK, Lee YS, Lee YH, Kim SI, Yun HY (2001) Anticarcinogenic effect of Panax ginseng C. A. Meyer and identification of active compounds. J Korean Med Sci 16:S6–S18

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhai J, Wang Y, Sun C, Jiang S, Wang K, Zhang Y, Zhang H-B, Zhang M (2013) A plant-transformation-competent BIBAC library of ginseng (Panax ginseng C. A. Meyer) for functional genomics research and characterization of genes involved in ginsenoside biosynthesis. Mol Breed 31:685–692

    Article  CAS  Google Scholar 

  • Zhou ZC, Dong Y, Sun HJ, Yang AF, Chen Z, Gao S, Jiang JW, Guan XY, Jiang B, Wang B (2014) Transcriptome sequencing of sea cucumber (Apostichopus japonicus) and the identification of gene-associated markers. Mol Ecol Resour 14:127–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was conducted with the support of the “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ010104)”, Rural Development Administration, Republic of Korea. This study was supported by the 2014 Postdoctoral Fellowship Program of National Institute of Horticultural and Herbal Science, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong-Hwan Bang.

Additional information

Communicated by S. Hohmann.

Data accessibility

Raw sequence data: NCBI Sequence Read Archive: SRX446688, SRX446744, SRX446787, SRX446788.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, IH., Lee, SH., Kim, YC. et al. De novo transcriptome assembly and the identification of gene-associated single-nucleotide polymorphism markers in Asian and American ginseng roots. Mol Genet Genomics 290, 1055–1065 (2015). https://doi.org/10.1007/s00438-014-0974-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0974-6

Keywords

Navigation