Skip to main content

Advertisement

Log in

Investigating co-evolution of functionally associated phosphosites in human

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Phosphorylation is essential for protein function and signal transduction in eukaryotic cells. With the rapid development of mass spectrometry technology, a large number of phosphosites are identified. However, high-throughput methods of functional characterization for phosphosites are still scarce. In this study, we inspected if the co-evolution property can be used as an indicator to explore function of phosphosites through investigating co-evolutionary relationship between functionally associated phosphosites in human. In practice, the evolution attributes of phosphosites were represented with phylogenetic profiles, and then co-evolutionary correlations of functionally associated phosphosites were detected on three levels: (1) phosphosites within one protein; (2) phosphosites in different proteins participating in the same signal transduction pathways, and (3) general phosphosites. Results of the detection show that co-evolution is a general property of functionally associated phosphosites. This finding suggests to some degree that it is feasible to use the co-evolution property in exploring the function of phosphosites and investigating the functional association between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Beltrao P, Albanese V, Kenner LR, Swaney DL, Burlingame A, Villen J, Lim WA, Fraser JS, Frydman J, Krogan NJ (2012) Systematic functional prioritization of protein posttranslational modifications. Cell 150:413–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–3500

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cohen P (2000a) The regulation of protein function by multisite phosphorylation. Trends Biochem Sci 25(12):596–601

    Article  CAS  PubMed  Google Scholar 

  • Cohen P (2000b) The regulation of protein function by multisite phosphorylation—a 25-year update. Trends Biochem Sci 25:596–601

    Article  CAS  PubMed  Google Scholar 

  • Fischer EH (1999) Cell signaling by protein tyrosine phosphorylation. Adv Enzyme Regul 39:359–369

    Article  CAS  PubMed  Google Scholar 

  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, Jensen LJ (2013) STRING v9.1: protein–protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fryxell KJ (1996) The coevolution of gene family trees. Trends Genet 12:364–369

    Article  CAS  PubMed  Google Scholar 

  • Goh Chern-Sing, Bogan Andrew A, Joachimiak Marcin, Walther Dirk, Cohen FE (2000) Co-evolution of proteins with their interaction partners. J Mol Biol 299:283–293

    Article  CAS  PubMed  Google Scholar 

  • Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277–D280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krebs JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82:111–121

    Article  PubMed  Google Scholar 

  • Landry CR, Levy ED, Michnick SW (2009) Weak functional constraints on phosphoproteomes. Trends Genet 25:193–197

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jia J, Li H, Yu J, Sun H, He Y, Lv D, Yang X, Glocker MO, Ma L, Yang J, Li L, Li W, Zhang G, Liu Q, Li Y, Xie L (2014) SysPTM 2.0: an updated systematic resource for post-translational modification. Database Oxf. doi:10.1093/database/bau025

    Google Scholar 

  • Lopez E, Cho WC (2012) Phosphoproteomics and lung cancer research. Int J Mol Sci 13:12287–12314

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lundby A, Secher A, Lage K, Nordsborg NB, Dmytriyev A, Lundby C, Olsen JV (2012) Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues. Nat commun 3:876

    Article  PubMed Central  PubMed  Google Scholar 

  • Marcotte EM (1999) Detecting protein function and protein–protein interactions from genome sequences. Science 285:751–753

    Article  CAS  PubMed  Google Scholar 

  • Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, Gavin AC, van Noort V, Bork P (2012) Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol 8:599

    Article  PubMed Central  PubMed  Google Scholar 

  • Niu S, Wang Z, Ge D, Zhang G, Li Y (2012) Prediction of functional phosphorylation sites by incorporating evolutionary information Protein & cell 3:675–690

    CAS  Google Scholar 

  • Pawson T, Scott JD (2005) Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci 30:286–290

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini Matteo, Marcotte Edward M, Thompson Michael J, Eisenberg David, Yeates TO (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 96:4285–4288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, Dicuccio M, Federhen S, Feolo M, Fingerman IM, Geer LY, Helmberg W, Kapustin Y, Krasnov S, Landsman D, Lipman DJ, Lu Z, Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Karsch-Mizrachi I, Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Slotta D, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Wang Y, Wilbur WJ, Yaschenko E, Ye J (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40:D13–D25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schug A, Weigt M, Onuchic JN, Hwa T, Szurmant H (2009) High-resolution protein complexes from integrating genomic information with molecular simulation. Proc Natl Acad Sci USA 106:22124–22129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tress M, de Juan D, Grana O, Gomez MJ, Gomez-Puertas P, Gonzalez JM, Lopez G, Valencia A (2005) Scoring docking models with evolutionary information Proteins 60:275–280

    CAS  Google Scholar 

  • Wang Z, Ding G, Geistlinger L, Li H, Liu L, Zeng R, Tateno Y, Li Y (2011) Evolution of protein phosphorylation for distinct functional modules in vertebrate genomes. Mol Biol Evol 28:1131–1140

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Peterson SE, Loring JF (2014) Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Res 24:143–160

    Article  PubMed Central  PubMed  Google Scholar 

  • Yeang CH, Haussler D (2007) Detecting coevolution in and among protein domains. PLoS Comput Biol 3:e211

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng GY, Liu Q, Ding GH, Wei CC, Li YX (2012) Towards biological characters of interactions between transcription factors and their DNA targets in mammals. BMC Genomics 13:388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the anonymous reviewers for their help to improve the manuscript. The authors gratefully acknowledge the support of SA-SIBS scholarship program. This work was supported by the National Basic Research program of China (973) (No. 2011CB910204), the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences (No. KSCX2-EW-R-04), the National Natural Science Foundation of China (No. 31100957, No. 31070752, No. 31301032), China Postdoctoral Science Foundation Fund (No. 20110490758), and Shanghai Postdoctoral Scientific Program (13R21417300).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yixue Li.

Additional information

Communicated by S. Hohmann.

Z. Liu and G. Zheng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

438_2014_881_MOESM1_ESM.xlsx

Table S1—statistics of the Homologene database. The first column is species information; the second column is initial gene number of a species; the third column is the number of genes having homology for a species; and the fourth column is the number of homology groups for a species (XLSX 11 kb)

438_2014_881_MOESM2_ESM.xlsx

Table S2—information of phosphosites involved in KEGG pathways. Detailed phylogenetic profile information of phosphosites participated in human signalling transduction pathways is provided (XLSX 19 kb)

438_2014_881_MOESM3_ESM.xlsx

Table S3—information of multi-phosphorylated proteins. Phylogenetic profile information of phosphosites within proteins is provided in the first sheet. Profile correlation values of functional associated phosphosite-pairs and the average correlation values of phosphosite-pairs within proteins are provided in the second sheet (XLSX 15 kb)

438_2014_881_MOESM4_ESM.xlsx

Table S4—Phylogenetic profile information of phosphosites in the mTor, MAPK, and PI3K-AKT pathway. The first three sheets present the phosphosites and their phylogenetic pattern information in the mTor pathway, MAPK pathway, and PI3K-AKT pathway respectively. The last three sheets present correlation values of phylogenetic profile for target and control phosphosite-pairs in the mTor pathway, MAPK pathway, and PI3K-AKT pathway, respectively (XLSX 21 kb)

438_2014_881_MOESM5_ESM.xlsx

Table S5—information of interacted proteins regulated by same kinases. The detailed information of interacted proteins, kinases, phosphosites, and phylogenetic profile correlation values are provided. The last two columns are correlation values of phosphosite-pairs with functional association and the average correlation value of all phosphosite-pairs within interacted proteins, respectively (XLSX 85 kb)

438_2014_881_MOESM6_ESM.xlsx

Table S6—distance information of intra-group and inter-group phosphosites. For a protein, its phosphosites with identical profiles are classified into a pattern group. Then the average distance are calculated between sites in one group (intra-group) as well as sites of different groups (inter-group). The last two columns present the distance of sites intra-group and inter-group, respectively (XLSX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zheng, G., Dong, X. et al. Investigating co-evolution of functionally associated phosphosites in human. Mol Genet Genomics 289, 1217–1223 (2014). https://doi.org/10.1007/s00438-014-0881-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-014-0881-x

Keywords

Navigation