Skip to main content
Log in

Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The EnvZ/OmpR and GrrS/GrrA systems, two widely distributed two-component systems in gamma-Proteobacteria, negatively control amylovoran biosynthesis in Erwinia amylovora, and the two systems regulate motility in an opposing manner. In this study, we examined the interplay of EnvZ/OmpR and GrrS/GrrA systems in controlling various virulence traits in E. amylovora. Results showed that amylovoran production was significantly higher when both systems were inactivated, indicating that the two systems act as negative regulators and their combined effect on amylovoran production appears to be enhanced. In contrast, reduced motility was observed when both systems were deleted as compared to that of grrA/grrS mutants and WT strain, indicating that the two systems antagonistically regulate motility in E. amylovora. In addition, glycogen accumulation was much higher in envZ/ompR and two triple mutants than that of grrS/grrA mutants and WT strain, suggesting that EnvZ/OmpR plays a dominant role in regulating glycogen accumulation, whereas levan production was significantly lower in the grrS/grrA and two triple mutants as compared with that of WT and envZ/ompR mutants, indicating that GrrS/GrrA system dominantly controls levan production. Furthermore, both systems negatively regulated expression of three type III secretion (T3SS) genes and their combined negative effect on hrp-T3SS gene expression increased when both systems were deleted. These results demonstrated that EnvZ/OmpR and GrrS/GrrA systems co-regulate various virulence factors in E. amylovora by still unknown mechanisms or through different target genes, sRNAs, or proteins, indicating that a complex regulatory network may be involved, which needs to be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ancona V, Zhao YF (2013) CsrA is a positive regulator of virulence factors in Erwinia amylovora. Phytopathology 103:S2.6

    Google Scholar 

  • Ancona V, Li WT, Zhao YF (2013) Alternative sigma factor RpoN and its modulator protein YhbH are indispensable for Erwinia amylovora virulence. Mol Plant Pathol. doi:10.1111/mpp.12065

    PubMed  Google Scholar 

  • Bellemann P, Bereswill S, Berger S, Geider K (1994) Visualization of capsule formation by Erwinia amylovora and assays to determine amylovoran synthesis. Int J Biol Macromol 16:290–296

    Article  CAS  PubMed  Google Scholar 

  • Berry A, DeVault JD, Chakrabarty AM (1989) High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J Bacteriol 171:2312–2317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bogdanove AJ, Kim JF, We ZM, Kolchinsky I, Charkowski AO, Conlin AK, Collmer A, Beer SV (1998) Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc Natl Acad Sci USA 95:1325–1330

    Article  CAS  PubMed  Google Scholar 

  • Bonafonte MA, Solano C, Sesma B, Alvarez M, Montuenga L, Garcia-Ros D, Gamazo C (2000) The relationship between glycogen synthesis, biofilm formation and virulence of Salmonella enteritidis. FEMS Microbiol Lett 191:31–36

    Article  CAS  PubMed  Google Scholar 

  • Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, Lory S (2009) The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol 73:434–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brzostek K, Brzostkowska M, Bukowska I, Karwicka E, Raczkowska A (2007) OmpR negatively regulates expression of invasin in Yersinia enterocolitica. Microbiology 153:2416–2425

    Article  CAS  PubMed  Google Scholar 

  • Brzostek K, Skorek K, Raczkowska A (2012) OmpR, a central integrator of several cellular responses in Yersinia enterocolitica. Adv Exp Med Biol 954:325–334

    Article  CAS  PubMed  Google Scholar 

  • Bugert P, Geider K (1995) Molecular analysis of the ams operon required for exopolysaccharide synthesis of Erwinia amylovora. Mol Microbiol 15:917–933

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Chatterjee A, Chatterjee AK (2001) Effects of the two-component system comprising GacA and GacS of Erwinia carotovora subsp. carotovora on the production of global regulatory rsmB RNA, extracellular enzymes, and Harpin Ecc . Mol Plant Microbe Interact 14:516–526

    Article  CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  PubMed  Google Scholar 

  • Dellagi A, Reis D, Vian B, Expert D (1999) Expression of the ferrioxamine receptor gene of Erwinia amylovora CFBP1430 during pathogenesis. Mol Plant Microbe Interact 12:463–466

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Geider K (2002) Characterization of an activator gene upstream of lsc, involved in levan synthesis of Erwinia amylovora. Physiol Mol Plant Pathol 60:9–17

    Article  Google Scholar 

  • Eydallin G, Viale AM, Moran-Zorzano MT, Munoz FJ, Montero M, Baroja-Fernandez E, Pozueta-Romero J (2007) Genome-wide screening of genes affecting glycogen metabolism in Escherichia coli K-12. FEBS Lett 581:2947–2953

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Oropeza R, Kenney LJ (2003) Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol Microbiol 48:1131–1143

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Walthers D, Oropeza R, Kenney LJ (2004) The response regulator SsrB activates transcription and binds to a region overlapping OmpR binding sites at Salmonella pathogenicity island 2. Mol Microbiol 54:823–835

    Article  CAS  PubMed  Google Scholar 

  • Gaffney TD, Lam ST, Ligon J, Gates K, Frazelle A, Di Maio J, Hill S, Goodwin S, Torkewitz N, Allshouse AM (1994) Global regulation of expression of antifungal factors by a Pseudomonas fluorescens biological control strain. Mol Plant Microbe Interact 7:455–463

    Article  CAS  PubMed  Google Scholar 

  • Gao R, Stock AM (2009) Biological insights from structures of two-component proteins. Annu Rev Microbiol 63:133–154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gao H, Zhang Y, Han Y, Yang L, Liu X, Guo Z, Tan Y, Huang X, Zhou D, Yang R (2011) Phenotypic and transcriptional analysis of the osmotic regulator OmpR in Yersinia pestis. BMC Microbiol 11:39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geier G, Geider K (1993) Characterization and influence on virulence of the levansucrase gene from the fire blight pathogen Erwinia amylovora. Physiol Mol Plant Pathol 42:387–404

    Article  CAS  Google Scholar 

  • Gopel Y, Gorke B (2012) Rewiring two-component signal transduction with small RNAs. Curr Opin Microbiol 15:132–139

    Article  PubMed  Google Scholar 

  • Harlocker SL, Bergstrom L, Inouye M (1995) Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. J Biol Chem 270:26849–26856

    Article  CAS  PubMed  Google Scholar 

  • Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant Microbe Interact 14:1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170

    Article  CAS  PubMed  Google Scholar 

  • Hoch JA, Silhavy TJ (1995) Two-component signal transduction. ASM Press, Washington DC

    Google Scholar 

  • Jubelin G, Vianney A, Beloin C, Ghigo JM, Lazzaroni JC, Lejeune P, Dorel C (2005) CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 187:2038–2049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan MA, Zhao YF, Korban SS (2012) Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Mol Biol Rep 30:247–260

    Article  CAS  Google Scholar 

  • Kim DJ, Boylan B, George N, Forst S (2003) Inactivation of ompR promotes precocious swarming and flhDC expression in Xenorhabdus nematophila. J Bacteriol 185:5290–5294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koczan JM, McGrath MJ, Zhao YF, Sundin GW (2009) Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: implications in pathogenicity. Phytopathology 99:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Lai S, Tremblay J, Déziel E (2009) Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 11:126–136

    Article  CAS  PubMed  Google Scholar 

  • Lapouge K, Schubert M, Allain FHT, Haas D (2008) Gac/Rsm signal transduction pathway of γ-proteobacteria: from RNA recognition to regulation of social behavior. Mol Microbiol 67:241–253

    Article  CAS  PubMed  Google Scholar 

  • Laville J, Voisard C, Keel C, Maurhofer M, Defago G, Haas D (1992) Global control in Pseudomonas fluorescens mediating antibiotic synthesis and suppression of black root rot of tobacco. Proc Natl Acad Sci USA 89:1562–1566

    Article  CAS  PubMed  Google Scholar 

  • Lebeau A, Reverchon S, Gaubert S, Kraepiel Y, Simond-Côte E, Nasser W, Van Gijsegem F (2008) The GacA global regulator is required for the appropriate expression of Erwinia chrysanthemi 3937 pathogenicity genes during plant infection. Environ Microbiol 10:545–559

    Article  CAS  PubMed  Google Scholar 

  • Mann RA, Smits THM, Buhlmann A, Blom J, Goesmann A, Frey JE, Plummer KM, Beer SV, Luck JE, Duffy B, Rodoni BC (2013) Comparative genomics of 12 strains of Erwinia amylovora identifies a pan-genome with a large conserved core. PLoS ONE 8:e55644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McNally RR, Toth IK, Cock PJA, Pritchard L, Hedley PE, Zhao YF, Sundin GW (2012) Genetic characterization of the HrpL regulon of the fire blight pathogen Erwinia amylovora reveals novel virulence factors. Mol Plant Pathol 13:160–173

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee A, Cui Y, Liu Y, Dumenyo CK, Chatterjee AK (1996) Global regulation in Erwinia species by Erwinia carotovora RsmA, a homologue of Escherichia coli CsrA: repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology 142:427–434

    Article  CAS  PubMed  Google Scholar 

  • Nakka S, Qi M, Zhao YF (2010) The Erwinia amylovora PhoPQ system is involved in resistance to antimicrobial peptide and suppresses gene expression of two novel type III secretion systems. Microbiol Res 165:665–673

    Article  CAS  PubMed  Google Scholar 

  • Nissinen RM, Ytterberg AJ, Bogdanove AJ, van Wijk K, Beer SV (2007) Analyses of the secretomes of Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ on extracellular harpin levels. Mol Plant Pathol 8:55–67

    Article  CAS  PubMed  Google Scholar 

  • Oh CS, Beer SV (2005) Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 253:185–192

    Article  CAS  PubMed  Google Scholar 

  • Oh CS, Kim JF, Beer SV (2005) The Hrp pathogenicity island of Erwinia amylovora and identification of three novel genes required for systemic infection. Mol Plant Pathol 6:125–138

    Article  CAS  PubMed  Google Scholar 

  • Overhage J, Bains M, Brazas MD, Hancock REW (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190:2671–2679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Park D, Forst S (2006) Co-regulation of motility, exoenzyme and antibiotic production by the EnvZ-OmpR-FlhDC-FliA pathway in Xenorhabdus nematophila. Mol Microbiol 61:1397–1412

    Article  CAS  PubMed  Google Scholar 

  • Parkins MD, Ceri H, Storey DG (2001) Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 40:1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Pickard D, Li J, Roberts M, Maskell D, Hone D, Levine M, Dougan G, Chatfield S (1994) Characterization of defined ompR mutants of Salmonella typhi: OmpR is involved in the regulation of Vi polysaccharide expression. Infect Immun 62:3984–3993

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi M, Sun F, Caetano-Anolles G, Zhao YF (2010) Comparative genomic and phylogenetic analyses reveal the evolution of core two-component signal transduction systems in enterobacteria. J Mol Evol 70:167–180

    Article  CAS  PubMed  Google Scholar 

  • Raczkowska A, Skorek K, Brzóstkowska M, Lasińska A, Brzostek K (2011a) Pleiotropic effects of a Yersinia enterocolitica ompR mutation on adherent-invasive abilities and biofilm formation. FEMS Microbiol Lett 321:43–49

    Article  CAS  PubMed  Google Scholar 

  • Raczkowska A, Skorek K, Bielecki J, Brzostek K (2011b) OmpR controls Yersinia enterocolitica motility by positive regulation of flhDC expression. Ant Van Leeuw 99:381–394

    Article  Google Scholar 

  • Romeo T, Kumar A, Preiss J (1988) Analysis of the Escherichia coli glycogen gene cluster suggests that catabolic enzymes are encoded among the biosynthetic genes. Gene 70:363–376

    Article  CAS  PubMed  Google Scholar 

  • Romeo T, Vakulskas CA, Babitzke P (2013) Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 15:313–324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Siryaporn A, Goulian M (2008) Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E. coli. Mol Microbiol 70:494–506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skerker JM, Prasol MS, Perchuk BS, Biondi EG, Laub MT (2005) Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol 3:e334

    Article  PubMed Central  PubMed  Google Scholar 

  • Smits THM, Rezzonico F, Kamber T, Blom J, Goesmann A, Frey JE, Duffy B (2010) Complete genome sequence of the fire blight pathogen Erwinia amylovora CFBP 1430 and comparison to other Erwinia spp. Mol Plant Microbe Interact 23:384–393

    Article  CAS  PubMed  Google Scholar 

  • Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M, Goodier RI, Ahmer BM (2003) Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella. J Bacteriol 185:7257–7265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Timmermans J, Melderen LV (2009) Conditional essentiality of the csrA gene in Escherichia coli. J Bacteriol 191:1722–1724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang DP, Korban SS, Zhao YF (2009) The Rcs phosphorelay system is essential for pathogenicity in Erwinia amylovora. Mol Plant Pathol 10:277–290

    Article  CAS  PubMed  Google Scholar 

  • Wang DP, Korban SS, Zhao YF (2010) Molecular signature of differential virulence in natural isolates of Erwinia amylovora. Phytopathology 100:192–198

    Article  CAS  PubMed  Google Scholar 

  • Wang DP, Korban SS, Pusey L, Zhao YF (2011) Characterization of the RcsC sensor kinase from Erwinia amylovora and other enterobacteria. Phytopathology 101:710–717

    Article  CAS  PubMed  Google Scholar 

  • Wang DP, Qi MS, Calla B, Korban SS, Clough SJ, Cock P, Sundin GW, Toth I, Zhao YF (2012a) Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora. Mol Plant Microbe Interact 25:6–17

    Article  CAS  PubMed  Google Scholar 

  • Wang DP, Korban SS, Pusey L, Zhao YF (2012b) AmyR is a novel negative regulator of amylovoran production in Erwinia amylovora. PLoS ONE 7:e45038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376

    Article  CAS  PubMed  Google Scholar 

  • Whistler CA, Corbell NA, Sarniguet A, Ream W, Loper JE (1998) The two-component regulators GacS and GacA influence accumulation of the stationary-phase sigma factor sigma S and the stress response in Pseudomonas fluorescens pf-5. J Bacteriol 180:6635–6641

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willis DK, Holmstadt JJ, Kinscherf TG (2001) Genetic evidence that loss of virulence associated with gacS or gacA mutations in Pseudomonas syringae B728a does not result from effects on alginate production. Appl Environ Microbiol 67:1400–1403

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Workentine ML, Chang L, Ceri H, Turner RJ (2009) The GacS-GacA two-component regulatory system of Pseudomonas fluorescens: a bacterial two-hybrid analysis. FEMS Microbiol Lett 292:50–56

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Korban SS, Pusey L, Elofsson M, Sundin GW, Zhao YF (2013) Small molecule inhibitors suppress expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovora. Mol Plant Pathol. doi:10.1111/mpp.12064

    Google Scholar 

  • Zhao YF, Qi M (2011) Comparative genomics of Erwinia amylovora and related Erwinia species-what do we learn? Genes 2:627–639

    Article  CAS  Google Scholar 

  • Zhao YF, Blumer SE, Sundin GW (2005) Identification of Erwinia amylovora genes induced during infection of immature pear tissue. J Bacteriol 187:8088–8103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao YF, He SY, Sundin GW (2006) The Erwinia amylovora avrRpt2 EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in Pseudomonas syringae. Mol Plant Microbe Interact 19:644–654

    Article  CAS  PubMed  Google Scholar 

  • Zhao YF, Sundin GW, Wang D (2009a) Construction and analysis of pathogenicity island deletion mutants of Erwinia amylovora. Can J Microbiol 55:457–464

    Article  CAS  PubMed  Google Scholar 

  • Zhao YF, Wang D, Nakka S, Sundin GW, Korban SS (2009b) Systems level analysis of two-component signal transduction systems in Erwinia amylovora: role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genomics 10:245

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Agriculture and Food Research Initiative Competitive Grants Program Grant No. 2010-65110-20497 from the USDA National Institute of Food and Agriculture, the Agricultural Experiment Station of Illinois, and University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youfu Zhao.

Additional information

Communicated by D. Andersson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Ancona, V. & Zhao, Y. Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovora . Mol Genet Genomics 289, 63–75 (2014). https://doi.org/10.1007/s00438-013-0790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-013-0790-4

Keywords

Navigation