Skip to main content

Advertisement

Log in

The jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact with 19 proteins involved in transcription, sumoylation and DNA repair

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The jumonji domain is a highly conserved bipartite domain made up of two subdomains, jmjN and jmjC, which is found in many eukaryotic transcription factors. The jmjC domain was recently shown to possess the histone demethylase activity. Here we show that the jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact in a two-hybrid system with 19 yeast proteins that include the RecQ helicase Sgs1, the silencing factors Esc1 and Sir4, the URI-type prefoldin Bud27 and the PIAS type SUMO ligase Nfi1/Siz2. Extensive interaction cross dependencies further suggest that the proteins form a larger complex. Consistent with this, 16 of the proteins also interact with a Bud27 two-hybrid bait, and three of them co-precipitate with TAP-tagged Gis1. The Gis1 jumonji domain can repress transcription when recruited to a promoter as a lexA fusion. This effect is dependent on both the jmjN and jmjC subdomains, as were all 19 two-hybrid interactions, indicating that the two subdomains form a single functional unit. The human Sgs1 homolog WRN also interacts with the Gis1 jumonji domain. Finally, we note that several jumonji domain interactors are related to proteins that are found in mammalian PML nuclear bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrulis AD, Zappulla DC, Ansari A, Perrod S, Laiosa CV, Gartenberg MR, Sternglanz R (2002) Esc1, a nuclear protein required for Sir4-based plasmid anchoring and partitioning. Mol Cell Biol 22:8292–8301

    Article  PubMed  CAS  Google Scholar 

  • Balciunas D, Ronne H (1999) Yeast genes GIS1-4: multicopy suppressors of the Gal- phenotype of snf1 mig1 srb8/10/11 cells. Mol Gen Genet 262:589–599

    Article  PubMed  CAS  Google Scholar 

  • Balciunas D, Ronne H (2000) Evidence of domain swapping within the jumonji family of transcription factors. Trends Biochem Sci 25:274–276

    Article  PubMed  CAS  Google Scholar 

  • Balciunas D, Gälman C, Ronne H, Björklund S (1999) The Med1 subunit of the yeast mediator complex is involved in both transcriptional activation and repression. Proc Natl Acad Sci USA 96:376–381

    Article  PubMed  CAS  Google Scholar 

  • Bennett RJ, Sharp JA, Wang JC (1998) Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J Biol Chem 273:9644–9650

    Article  PubMed  CAS  Google Scholar 

  • Blander G, Zalle N, Daniely Y, Taplick J, Gray MD, Oren M (2002) DNA damage-induced translocation of the Werner helicase is regulated by acetylation. J Biol Chem 277:50934–50940

    Article  PubMed  CAS  Google Scholar 

  • Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581–592

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Huang D, Roach PJ (1997) Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast 13:1–8

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Zang J, Whetstine J, Hong X, Davrazou F, Kutateladze TG, Simpson M, Mao Q, Pan CH, Dai S, Hagman J, Hansen K, Shi Y, Zhang G (2006) Structural insights into histone demethylation by JMJD2 family members. Cell 125:1–12

    Article  Google Scholar 

  • Clissold PM, Ponting CP (2001) JmjC: cupin metalloenzyme-like domains in jumonji, hairless and phospholipase A2beta. Trends Biochem Sci 26:7–9

    Article  PubMed  CAS  Google Scholar 

  • Enomoto T (2001) Function of RecQ family helicases: possible involvement of Bloom’s and Werner’s syndrome gene products in guarding genome integrity during DNA replication. J Biochem (Tokyo) 129:501–507

    CAS  Google Scholar 

  • Estojak J, Brent R, Golemis EA (1995) Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15:5820–5829

    PubMed  CAS  Google Scholar 

  • Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  PubMed  CAS  Google Scholar 

  • Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14:8391–8398

    PubMed  CAS  Google Scholar 

  • Gasser SM, Cockell MM (2001) The molecular biology of the SIR proteins. Gene 279:1–16

    Article  PubMed  CAS  Google Scholar 

  • Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dumpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440:631–636

    Article  PubMed  CAS  Google Scholar 

  • Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M, Vigneron M, Peter M, Krek W (2003) Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302:1208–1212

    Article  PubMed  CAS  Google Scholar 

  • Gyuris J, Zervos AS, Brent R (1993) Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites. Cell 72:223–232

    Article  PubMed  Google Scholar 

  • Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A, Hochstrasser M (2005) Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem 250:4102–4110

    Google Scholar 

  • Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P, Bennett K, Boutilier K, Yang L, Wolting C, Donaldson I, Schandorff S, Shewnarane J, Vo M, Taggart J, Goudreault M, Muskat B, Alfarano C, Dewar D, Lin Z, Michalickova K, Willems AR, Sassi H, Nielsen PA, Rasmussen KJ, Andersen JR, Johansen LE, Hansen LH, Jespersen H, Podtelejnikov A, Nielsen E, Crawford J, Poulsen V, Sorensen BD, Matthiesen J, Hendrickson RC, Gleeson F, Pawson T, Moran MF, Durocher D, Mann M, Hogue CW, Figeys D, Tyers M (2002) Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183

    Article  PubMed  CAS  Google Scholar 

  • Hu F, Alcasabas AA, Elledge SJ (2001) Asf1 links Rad53 to control of chromatin assembly. Genes Dev 15:1061–1066

    Article  PubMed  CAS  Google Scholar 

  • Ivy JM, Hicks JB, Klar AJ (1985) Map positions of yeast genes SIR1, SIR3 and SIR4. Genetics 111:735–744

    PubMed  CAS  Google Scholar 

  • Iwase M, Toh-e A (2001) Nis1 encoded by YNL078W: a neck protein of Saccharomyces cerevisiae. Gen Gen Sys 76:335–343

    Article  CAS  Google Scholar 

  • Jang YK, Wang L, Sancar GB (1999) RPH1 and GIS1 are damage-responsive repressors of PHR1. Mol Cell Biol 19:7630–7638

    PubMed  CAS  Google Scholar 

  • Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382

    Article  PubMed  CAS  Google Scholar 

  • Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106:735–744

    Article  PubMed  CAS  Google Scholar 

  • Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 20:971–978

    Article  PubMed  CAS  Google Scholar 

  • Kamens J, Brent R (1991) A yeast transcription assay defines distinct rel and dorsal DNA recognition sequences. New Biol 3:1005–1013

    PubMed  CAS  Google Scholar 

  • Kawabe Y, Seki M, Seki T, Wang WS, Imamura O, Furuichi Y, Saitoh H, Enomoto T (2000) Covalent modification of the Werner’s syndrome gene product with the ubiquitin-related protein SUMO-1. J Biol Chem 275:20963–20966

    Article  PubMed  CAS  Google Scholar 

  • Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ, Boone C, Emili A, Weissman JS, Hughes TR, Strahl BD, Grunstein M, Greenblatt JF, Buratowski S, Krogan NJ (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123:593–605

    Article  PubMed  CAS  Google Scholar 

  • Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, Canadien V, Richards DP, Beattie BK, Emili A, Boone C, Shilatifard A, Buratowski S, Greenblatt J (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 12:4207–4318

    Article  CAS  Google Scholar 

  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643

    Article  PubMed  CAS  Google Scholar 

  • Kurischko C, Weiss G, Ottey M, Luca FC (2005) A role for the Saccharomyces cerevisiae regulation of Ace2 and polarized morphogenesis signaling network in cell integrity. Genetics 171:443–455

    Article  PubMed  CAS  Google Scholar 

  • Li B, Howe L, Anderson S, Yates JR III, Workman JL (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. J Biol Chem 278:8897–8903

    Article  PubMed  CAS  Google Scholar 

  • Lisby M, Rothstein R (2004) DNA damage checkpoint and repair centers. Curr Opin Cell Biol 16:328–334

    Article  PubMed  CAS  Google Scholar 

  • Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6:838–849

    Article  PubMed  CAS  Google Scholar 

  • Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R (2005) LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437:436–439

    PubMed  CAS  Google Scholar 

  • Müller S, Ledl A, Schmidt D (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23:1998–2008

    Article  PubMed  CAS  Google Scholar 

  • Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB, Johnson ES, Berger SL (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20:966–976

    Article  PubMed  CAS  Google Scholar 

  • Negorev D, Maul GG (2001) Cellular proteins localized at and interacting with ND10/PML nuclear bodies/PODs suggest a functions of a nuclear depot. Oncogene 20:7234–7242

    Article  PubMed  CAS  Google Scholar 

  • Ni L, Snyder M (2001) A genomic study of the bipolar bud site selection pattern in Saccharomyces cerevisiae. Mol Biol Cell 12:2147–2170

    PubMed  CAS  Google Scholar 

  • Oshiro J, Han G-S, Iwanyshyn WM, Conover K, Carman GM (2003) Regulation of the yeast DPP1-encoded diacylglycerol pyrophosphate phosphatase by transcription factor Gis1p. J Biol Chem 278:31495–31503

    Article  PubMed  CAS  Google Scholar 

  • Panse VG, Hardeland U, Werner T, Kuster B, Hurt E (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279:41346–41351

    Article  PubMed  CAS  Google Scholar 

  • Pedruzzi I, Bürckert N, Egger P, De Virgilio C (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1. EMBO J 19:2569–2579

    Article  PubMed  CAS  Google Scholar 

  • Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complexes. Methods 24:218–229

    Article  PubMed  CAS  Google Scholar 

  • Rabitsch KP, Toth A, Galova M, Schleiffer A, Schaffner G, Aigner E, Rupp C, Penkner AM, Moreno-Borchart AC, Primig M, Esposito RE, Klein F, Knop M, Nasmyth K (2001) A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr Biol 11:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Redon C, Pilch DR, Bonner WM (2006) Genetic analysis of Saccharomyces cerevisiae H2A serine 129 mutant suggests a functional relationship between H2A and the sister-chromatid cohesion partners Csm3-Tof1 for the repair of topoisomerase I-induced DNA damage. Genetics 172:67–76

    Article  PubMed  CAS  Google Scholar 

  • Rondon AG, Jimeno S, Garcia-Rubio M, Aguilera A (2003) Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 278:39037–39043

    Article  PubMed  CAS  Google Scholar 

  • Russnak R, Pereira S, Platt T (1996) RNA binding analysis of yeast REF2 and its two-hybrid interaction with a new gene product, FIR1. Gene Expr 6:241–258

    PubMed  CAS  Google Scholar 

  • Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15:3088–3103

    Article  PubMed  CAS  Google Scholar 

  • Sanders SL, Weil PA (2000) Identification of two novel TAF subunits of the yeast Saccharomyces cerevisiae TFIID complex. J Biol Chem 18:13895–13900

    Article  Google Scholar 

  • Schmidt D, Müller S (2003) PIAS/SUMO: new partners in transcriptional regulation. Cell Mol Life Sci 60:2561–2574

    Article  PubMed  CAS  Google Scholar 

  • Seeler J-S, Dejean A (1999) The PML nuclear bodies: actors or extras? Curr Opin Genet Dev 9:362–367

    Article  PubMed  CAS  Google Scholar 

  • Seeler J-S, Dejean A (2003) Nuclear and unclear functions of SUMO. Nat Rev Mol Cell Biol 4:690–699

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119:941–953

    Article  PubMed  CAS  Google Scholar 

  • Strasser K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondon AG, Aguilera A, Struhl K, Reed R, Hurt E (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–308

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Toh-e A, Kikuchi Y (2001) A novel factor for the SUMO/Smt3 conjugation of yeast septins. Gene 275:223–231

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Toh-e A, Kikuchi Y (2003) Comparative analysis of yeast PIAS-type SUMO ligases in vivo and in vitro. J Biochem 133:415–422

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi T, Yamazaki Y, Katoh-Fukui Y, Tsuchiya R, Kondo S, Motoyama J, Higashinakagawa T (1995) Gene trap capture of a novel mouse gene, jumonji, required for neural tube formation. Genes Dev 9:1211–1222

    PubMed  CAS  Google Scholar 

  • Tang HY, Xu J, Cai M (2000) Pan1p, End3p, and Sla1p, three yeast proteins required for normal cortical actin cytoskeleton organization, associate with each other and play essential roles in cell wall morphogenesis. Mol Cell Biol 20:12–25

    Article  PubMed  CAS  Google Scholar 

  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y (2006) Histone demethylation by a family of jmjC domain-containing proteins. Nature 439:811–816

    Article  PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627

    Article  PubMed  CAS  Google Scholar 

  • Wang XW, Tseng A, Ellis NA, Spillare EA, Linke SP, Robles AI, Seker H, Yang Q, Hu P, Beresten S, Bemmels NA, Garfield S, Harris CC (2001) Functional interaction of p53 and BLM DNA helicase in apoptosis. J Biol Chem 276:32948–32955

    Article  PubMed  CAS  Google Scholar 

  • Wegierski T, Billy E, Nasr R, Filipowicz W (2001) Bms1p, a G-domain containing protein, associates with Rvl1p and is required for 18S rDNA biogenesis in yeast. RNA 7:1254–1267

    Article  PubMed  CAS  Google Scholar 

  • Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, Shi Y (2006) Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125:1–15

    Article  CAS  Google Scholar 

  • Wohlschlegel JA, Johnson ES, Reed SI, Yates JA III (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279:45662–45668

    Article  PubMed  CAS  Google Scholar 

  • Woods A, Cheung PC, Smith FC, Davison MD, Scott J, Beri RK, Carling D (1996) Characterization of AMP-activated protein kinase β and γ subunits: assembly of the heterotrimeric complex in vitro. J Biol Chem 271:10282–10290

    Article  PubMed  CAS  Google Scholar 

  • Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH, Strahl BD (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 17:654–663

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Ihara M, Matsuura Y, Kikuchi A (2003) Sumoylation is involved in β-catenin-dependent activation of Tcf-4. EMBO J 22:2047–2059

    Article  PubMed  CAS  Google Scholar 

  • Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y (2006) JHDM2A, a jmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125:1–13

    Article  CAS  Google Scholar 

  • Yuan DS (2000) Zinc-regulated genes in Saccharomyces cerevisiae revealed by transposon tagging. Genetics 156:45–58

    PubMed  CAS  Google Scholar 

  • Zhang S, Skalsky Y, Garfinkel DJ (1999) MGA2 or SPT23 is required for transcription of the delta 9 fatty acid desaturase gene, OLE1, and nuclear membrane integrity in Saccharomyces cerevisiae. Genetics 151:473–483

    PubMed  CAS  Google Scholar 

  • Zhong S, Hu P, Ye TZ, Stan R, Ellis NA, Pandolfi PP (1999) A role for PML and the nuclear body in genomic stability. Oncogene 18:7941–7947

    Article  PubMed  CAS  Google Scholar 

  • Zhong S, Salomoni P, Pandolfi PP (2000) The transcriptional role of PML and the nuclear body. Nat Cell Biol 2:E85-E90

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Ryan JJ, Zhou H (2004) Global analyses of sumoylated proteins in Saccharomyces cerevisiae. J Biol Chem 279:32262–32268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pernilla Bjerling, Stefan Björklund, Claes Gustafsson, Magnus Hallberg, Natalie von der Lehr, Ann Mutvei and Claudio de Virgilio for helpful advice and Roger Brent and Jan Olof Nehlin for generous gifts of strains and plasmids. This work was supported by grants from the Swedish Research Council, the Erik and Mai Pehrsson Foundation and the Agrifungen program at SLU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Ronne.

Additional information

Communicated by S. Hohmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tronnersjö, S., Hanefalk, C., Balciunas, D. et al. The jmjN and jmjC domains of the yeast zinc finger protein Gis1 interact with 19 proteins involved in transcription, sumoylation and DNA repair. Mol Genet Genomics 277, 57–70 (2007). https://doi.org/10.1007/s00438-006-0171-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-006-0171-3

Keywords

Navigation