Skip to main content

Advertisement

Log in

Mapping Ds insertions in barley using a sequence-based approach

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

A transposon tagging system, based upon maize Ac/Ds elements, was developed in barley (Hordeum vulgare subsp. vulgare). The long-term objective of this project is to identify a set of lines with Ds insertions dispersed throughout the genome as a comprehensive tool for gene discovery and reverse genetics. AcTPase and Ds-bar elements were introduced into immature embryos of Golden Promise by biolistic transformation. Subsequent transposition and segregation of Ds away from AcTPase and the original site of integration resulted in new lines, each containing a stabilized Ds element in a new location. The sequence of the genomic DNA flanking the Ds elements was obtained by inverse PCR and TAIL-PCR. Using a sequence-based mapping strategy, we determined the genome locations of the Ds insertions in 19 independent lines using primarily restriction digest-based assays of PCR-amplified single nucleotide polymorphisms and PCR-based assays of insertions or deletions.The proncipal strategy was to identify and map sequence polymorphisms in the regions corresponding to the flanking DNA using the Oregon Wolfe Barley mapping population. The mapping results obtained by the sequence-based approach were confirmed by RFLP analyses in four of the lines. In addition, cloned DNA sequences corresponding to the flanking DNA were used to assign map locations to Morex-derived genomic BAC library inserts, thus integrating genetic and physical maps of barley. BLAST search results indicate that the majority of the transposed Ds elements are found within predicted or known coding sequences. Transposon tagging in barley using Ac/Ds thus promises to provide a useful tool for studies on the functional genomics of the Triticeae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    CAS  PubMed  Google Scholar 

  • Baker B, Schell J, Lorz H, Fedoroff N (1986) Transposition of the maize controlling element ‘ Activator ’ in tobacco. Proc Natl Acad Sci USA 83:4844–4848

    CAS  Google Scholar 

  • Batley J, Barker G, O’Sullivan H, Edwards KJ, Edwards D (2003) Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol 132:84–91

    Article  CAS  PubMed  Google Scholar 

  • Bennett M, Smith J (1976) Nuclear DNA amounts in angiosperms. Phil Trans Roy Soc Lond Series B 274:227–274

    CAS  Google Scholar 

  • Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci USA 100:2544–2549

    Article  CAS  PubMed  Google Scholar 

  • Costa JM, Corey A, Hayes P, Jobet C, Kleinhofs A, Kopisch-Obusch A, Kramer SF, Kudrna D, Li M, Riera-Lizarazu O, Sato K, Szucs P, Toojinda T, Vales MI, Wolfe RI (2001) Molecular mapping of the Oregon Wolfe barleys: a phenotypically polymorphic doubled-haploid population. Theor Appl Genet 103:415–424

    Article  CAS  Google Scholar 

  • Dellaporta S (1994) Plant DNA miniprep and microprep. In: Freeling M, Walbot V (eds) The Maize Handbook. Springer-Verlag, New York, pp 522–525

  • Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of colinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353

    Article  CAS  PubMed  Google Scholar 

  • Enoki H, Izawa T, Kawahara M, Komatsu M, Koh S, Kyozuka J, Shimamoto K (1999) Ac as a tool for the functional genomics of rice. Plant J 19:605–613

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff N, Wessler S, Shure M (1983) Isolation of the transposable maize controlling elements Ac and Ds. Cell 35:235–242

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    CAS  PubMed  Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity, Addendum. Anal Biochem 137:266–267

    CAS  PubMed  Google Scholar 

  • Gale M, Devos K (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  CAS  PubMed  Google Scholar 

  • Greco R, Ouwerkerk PBF, Sallaud C, Kohli A, Colombo L, Puigdomenech P, Guiderdoni E, Christou P, Hoge JHC, Pereira A (2001) Transposon insertional mutagenesis in rice. Plant Physiol 125:1175–1177

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hayes PM, Castro A, Marquez-Cedillo L, Corey A, Henson C, Jones BL, Kling J, Mather D, Matus I, Rossi C, Sato K (2003) Genetic diversity for quantitatively inherited agronomic and malting quality traits. In: von Bothmer R, Knüpffer H, van Hintum T, Sato K (eds) Diversity in barley ( Hordeum vulgare). Elsevier, Amsterdam pp 201–226

  • Islam AKMR, Shepherd KW, Sparrow DHB (1981) Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity 46:161–174

    Google Scholar 

  • Ito T, Motohashi R, Kuromori T, Mizukado S, Sakurai T, Kanahara H, Seki M, Shinozaki K (2002) A new resource of locally transposed Dissociation elements for screening gene-knockout lines in silico on the Arabidopsis genome. Plant Physiol 129:1695–1699

    Article  CAS  PubMed  Google Scholar 

  • Jähne A, Becker D, Brettschneider R, Lörz H (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor Appl Genet 89:525–533

    Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley ( Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  CAS  PubMed  Google Scholar 

  • Kleinhofs A, Graner A (2001) An integrated map of the barley genome. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 187–199

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes P, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V (1993) A molecular, isozyme and morphological map of the barley ( Hordeum vulgare) genome. Theor Appl Genet 86:705–712

    CAS  Google Scholar 

  • Kolesnik T, Szeverenyi I, Bachmann D, Kumar CS, Jiang S, Ramamoorthy R, Cai M, Ma ZG, Sundaresan V, Ramachandran S (2004) Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences. Plant J 37:301–314

    CAS  PubMed  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  CAS  PubMed  Google Scholar 

  • Koprek TK, McElroy D, Louwerse J, Williams-Carrier R, Lemaux PG (2000) An efficient method for dispersing Ds elements in the barley genome as a tool for determining gene function. Plant J 24:253–263

    Article  CAS  PubMed  Google Scholar 

  • Koprek T, Rangel S, McElroy D, Louwerse JD, Williams-Carrier RE, Lemaux PG (2001) Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley. Plant Physiol 125:1354–1362

    Article  CAS  PubMed  Google Scholar 

  • Kota R, Rudd S, Facius A, Kolesov G, Thiel T, Zhang H, Stein N, Mayer K, Graner A (2003) Snipping polymorphisms from large EST collections in barley ( Hordeum vulgare L.). Mol Genet Genomics 270:24–32

    Article  CAS  PubMed  Google Scholar 

  • Li J, Lease KA, Tax FE, Walker JC (2001) BRS1, a serine carboxypeptidase, regulates, BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:5916–5921

    Article  CAS  PubMed  Google Scholar 

  • Liu Y-G, Whittier RF (1994) Preparation of megabase plant DNA from nuclei in agarose plugs and microbeads. Nucleic Acids Res 22:2168–2169

    CAS  PubMed  Google Scholar 

  • Liu Y-G, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  CAS  PubMed  Google Scholar 

  • McElroy D, Louwerse J, McElroy S, Lemaux PG (1997) Development of a simple transient assay for Ac/Dc activity in cells of intact barley tissue. Plant J 11:157–165

    Article  CAS  PubMed  Google Scholar 

  • Mgonja MA, Dahleen LS, Franckowiack JD (1995) Subsets from mapping populations for localization of new genes in barley. Barley Genet News 24:14–23

    Google Scholar 

  • Michelmore R, Paran I, Kesseli R (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    CAS  PubMed  Google Scholar 

  • Moore G, Devos K, Wang Z, Gale M (1995) Cereal genome evolution. Grasses, line up and form a circle. Curr Biol 5:737–739

    CAS  PubMed  Google Scholar 

  • Ochman H, Gerber AS, Hartl DL (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623

    CAS  PubMed  Google Scholar 

  • Ochman H, Ayala FJ, Hartl DL (1993) Use of polymerase chain reaction to amplify segments outside boundaries of known sequences. Methods Enzymol 218:309–321

    Article  CAS  PubMed  Google Scholar 

  • Pan A, Hayes PM, Chen THH, Blake TK, Wright S, Karsai I, Bedö Z (1994) Genetic analysis of the components of winter hardiness in barley ( Hordeum vulgare L.). Theor Appl Genet 89:900–910

    CAS  Google Scholar 

  • Parinov S, Sevugan M, Ye D, Yang W-C, Kumaran M, Sundaresan V (1999) Analysis of flanking sequences from Dissociation insertion lines: a database for reverse genetics in Arabidopsis. Plant Cell 11:2263–2270

    Article  CAS  PubMed  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    CAS  PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Raina S, Mahalingam R, Chen F, Fedoroff N (2002) A collection of sequenced and mapped Ds transposon insertion sites in Arabidopsis thaliana. Plant Mol Biol 50:91–108

    Article  Google Scholar 

  • Ramsay L, et al (2000) A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005

    CAS  PubMed  Google Scholar 

  • Rostoks N, Park Y-J, Ramakrishna W, Ma J, Druka A, Shiloff BA, SanMiguel PJ, Jiang Z, Brueggeman R, Sandhu D, Gill K, Bennetzen JL, Kleinhofs A (2002) Genomic sequencing reveals gene content, genomic organization, and recombination relationships in barley. Funct Integr Genomics 2:51–59

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual (3rd edn). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Scholz S, Lörz H, Lütticke S (2001) Transposition of the maize transposable element Ac in barley ( Hordeum vulgare L.). Mol Gen Genet 264:653–661

    Article  CAS  PubMed  Google Scholar 

  • Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley ( Hordeum vulgare L.). Theor Appl Genet 106:411–422

    CAS  PubMed  Google Scholar 

  • Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G, Jones JDG (1999) Multiple independent defective Suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11:1841–1852

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, Software for the calculation of genetic linkage maps. Release 3.0. Plant Research International, Wageningen, The Netherlands

  • Wan Y, Lemaux PC (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol 104:37–48

    CAS  PubMed  Google Scholar 

  • Wanamaker S, Close T (2003) HarvEST: Triticeae. Release 0.99 (available at http://138.23.191.152:/blast/blast.html)

  • Waugh R, McLean K, Flavell A, Pearce S, Kumar A, Thomas BBT, Powell W (1997) Genetic distribution of BARE-1-like retrotransposable elements in the barley genome revealed by sequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Tomkins JP, Waugh R, Frisch DA, Kudrna D, Kleinhofs A, Brueggeman RS, Muehlbauer GJ, Wise RP, Wing RA (2000) A bacterial artificial chromosome library for barley ( Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theor Appl Genet 101:1093–1099

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NSF Award No. 0110512. PGL is supported by USDA Cooperative Extension through the University of California

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Hayes.

Additional information

Communicated by M.-A. Grandbastien

The first three authors contributed equally to this work

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, L.D., Marquez-Cedillo, L., Singh, J. et al. Mapping Ds insertions in barley using a sequence-based approach. Mol Genet Genomics 272, 181–193 (2004). https://doi.org/10.1007/s00438-004-1035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-004-1035-3

Keywords

Navigation