Skip to main content

Advertisement

Log in

Characterization of Schizosaccharomyces pombe mutants defective in vacuolar acidification and protein sorting

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The vacuolar H+-ATPases (V-ATPases) are ATP-dependent proton pumps responsible for acidification of intracellular compartments in eukaryotic cells. To investigate the functional roles of the V-ATPase in Schizosaccharomyces pombe, the gene vma1 encoding subunit A or vma3 encoding subunit c was disrupted. Both deletion mutants lost the capacity for vacuolar acidification in vivo, and showed sensitivity to neutral pH or high concentrations of divalent cations including Ca2+. The delivery of FM4-64 to the vacuolar membrane and accumulation of Lucifer Yellow CH were strongly inhibited in the vma1 and vma3 mutants. Moreover, deletion of the S. pombe vma1 + or vma3 + gene resulted in pleiotropic phenotypes consistent with lack of vacuolar acidification, including the missorting of vacuolar carboxypeptidase Y, abnormal vacuole morphology, and mating defects. These findings suggest that V-ATPase is essential for endocytosis, ion and pH homeostasis, and for intracellular targeting of vacuolar proteins and vacuolar biogenesis in S. pombe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A, B
Fig. 2A, B
Fig. 3A, B
Fig. 4
Fig. 5A, B

Similar content being viewed by others

References

  • Alfa C, Fantes P, Hyams J, McLoed M, Warbrick E (1993) Experiments with fission yeast: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Anraku Y, Hirata R, Wada Y, Ohya Y (1992) Molecular genetics of the yeast vacuolar H+-ATPase. J Exp Biol 172:67–81

    CAS  PubMed  Google Scholar 

  • Arata Y, Nishi T, Kawasaki-Nishi S, Shao E, Wilkens S, Forgac M (2002) Structure, subunit function and the regulation of coated vesicle and yeast vacuolar (H+)-ATPases. Biophys Biochim Acta 1555:71–74

    Article  CAS  Google Scholar 

  • Bachhawat AK, Manolson MF, Murdock DG, Garman JD, Jones EW (1993) The VPH2 gene encodes a 25-kDa protein required for activation of the yeast vacuolar H(+) ATPase. Yeast 9:175–184

    CAS  PubMed  Google Scholar 

  • Bellemare DR, Shaner L, Morano KA, Beaudoin J, Langlois R, Labbé S (2002) Ctr6, a vacuolar membrane copper transporter in Schizosaccharomyces pombe. J Biol Chem 277:46676–46686

    Article  CAS  PubMed  Google Scholar 

  • Bonangelino CJ, Chavez, EM, Bonifacino JS (2002) Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13:2486–2501

    Article  CAS  PubMed  Google Scholar 

  • Bone N, Millar JB, Toda T, Armstrong J (1998) Regulated vacuole fusion and fission in Schizosaccharomyces pombe: an osmotic response dependent on MAP kinases. Curr Biol 8:135–144

    CAS  PubMed  Google Scholar 

  • Borrelly GPM, Harrison MD, Robinson AK, Cox SG, Robinson NJ, Whitehall SK (2002) Surplus zinc is handled by Zym1 metallothionein and Zhf endoplasmic reticulum transporter in Schizosaccharomyces pombe. J Biol Chem 277:30394–30400

    Article  CAS  PubMed  Google Scholar 

  • Bowman EJ, Kendle R, Bowman BJ (2000) Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H+-ATPase, causes severe morphological changes in Neurospora crassa. J Biol Chem 175:167–176

    Article  Google Scholar 

  • Cheng H, Sugiura R, Wu W, Fujita M, Lu Y, Sio SO, Kawai R, Takegawa K, Shuntoh H, Kuno T (2002) Role of the Rab GTP-binding protein Ypt3 in the fission yeast exocytic pathway, and its connection to calcineurin function. Mol Biol Cell 13:2963–2976

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Ji YJ Dhakal BK, Yu J-R, Cho C, Song WK, Ahnn J (2003) Vacuolar-type H+-ATPase E subunit is required for embryogenesis and yolk transfer in Caenorhabditis elegans. Gene 311:13–23

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Bloss T, Vess C, Neumann D, Nies DH, zur Nieden U (2002) A transporter in the endoplasmic reticulum of Schizosaccharomyces pombe cells mediates zinc storage and differentially affects transition metal tolerance. J Biol Chem 277:18215–18221

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    CAS  PubMed  Google Scholar 

  • Cooper AA, Stevens TH (1996) Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 133:529–542

    CAS  PubMed  Google Scholar 

  • Davies SA, Goodwin SF, Kelly DC, Wang Z, Sozen MA, Kaiser K, Dow JAT (1996) Analysis and inactivation of vha55, the gene encoding the vacuolar ATPase B-subunit in Drosophila melanogaster reveals a larval lethal phenotype. J Biol Chem 271:30677–30684

    CAS  PubMed  Google Scholar 

  • Dow JAT, Davies SA, Guo Y, Graham S, Finbow M, Kaiser K (1997) Molecular genetic analysis of V-ATPase function in Drosophila melanogaster. J Exp Biol 200:237–245

    CAS  PubMed  Google Scholar 

  • Egel R (1989) Mating type genes, meiosis, and sporulation. In: Nasim A, Young P, Johnson BF (eds) Molecular biology of the fission Yeast. Academic Press, New York; pp 31–73

  • Eide DJ, Bridgham JT, Zhao Z, Mattoon JR (1993) The vacuolar H+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol Gen Genet 241:447–456

    CAS  PubMed  Google Scholar 

  • Forgac M (1989) Structure and function of the vacuolar class of ATP-driven proton pumps. Physiol Rev 69:765–796

    CAS  PubMed  Google Scholar 

  • Förster C, Kane PM (2000) Cytosolic Ca2+ homeostasis is a constitutive function of the V-ATPase in Saccharomyces cerevisiae. J Biol Chem 275:38245–38253

    Article  PubMed  Google Scholar 

  • Förster C, Santos MA, Ruffert S, Krämer R, Revuelta JL (1999) Physiological consequence of disruption of the VMA1 gene in the riboflavin overproducer Ashbya gossypii. J Biol Chem 274:9442–9448

    Article  PubMed  Google Scholar 

  • Ghislain M, Bowman EJ (1992) Sequence of the genes encoding subunits A and B of the vacuolar H+-ATPase of Schizosacchaaromyces pombe. Yeast 8:791–799

    CAS  PubMed  Google Scholar 

  • Gimble FS, Thorner J (1992) Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature 357:301–306

    Article  CAS  PubMed  Google Scholar 

  • Graham LA, Powell B, Stevens TH (2000) Composition and assembly of the yeast vacuolar H+-ATPase complex. J Exp Biol 203:61–70

    CAS  PubMed  Google Scholar 

  • Grimm C, Kohli J, Murray J, Maundrell K (1988) Genetic engineeering of Schizosaccharomyces pombe—a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet 215:81–86

    CAS  PubMed  Google Scholar 

  • Gu HH, Xu J, Gallagher M, Dean GE (1993) Peptide splicing in the vacuolar ATPase subunit A from Candida tropicalis. J Biol Chem 268:7372–7381

    CAS  PubMed  Google Scholar 

  • Hirata R, Ohsumi Y, Nakano A, Kawasaki H, Suzuki K, Anraku Y (1990) Molecular structure of a gene, VMA1 , encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J Biol Chem 265:6726–6733

    CAS  PubMed  Google Scholar 

  • Iwaki T, Osawa F, Onishi M, Koga T, Fujita Y, Hosomi A, Tanaka N, Fukui Y, Takegawa K (2003) Characterization of vps33 +, a gene required for vacuolar biogenesis and protein sorting in Schizosaccharomyces pombe. Yeast 20:845–855

    Article  CAS  PubMed  Google Scholar 

  • Kane PM, Parra KJ (2000) Assembly and regulation of the yeast vacuolar H+-ATPase. J Exp Biol 203:81–87

    CAS  PubMed  Google Scholar 

  • Kane PM, Yamashiro CT, Wolczyk DF, Neff N, Goebl M, Stevens TH (1990) Protein splicing converts the yeast TFP1 gene product to the 69-kDa subunit of the vacuolar H+-adenosine triphosphatase. Science 250:651–657

    CAS  PubMed  Google Scholar 

  • Kane PM, Kuehn MC, Howard-Stevenson I, Stevens TH (1992) Assembly and targeting of peripheral and integral membrane subunits of the yeast vacuolar H+-ATPase. J Biol Chem 267:447–454

    CAS  PubMed  Google Scholar 

  • Kane PM, Tarsio M, Liu J (1999) Early steps in assembly of the yeast vacuolar H+-ATPase. J Biol Chem 274:17275–17283

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki-Nishi S, Nishi T, Forgac M (2003) Proton trasnlocation driven by ATP hydrolysis in V-ATPase. FEBS Lett 545:76–85

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Nelson H, Nelson N (1992) Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae. J Biol Chem 267:3416–3422

    CAS  PubMed  Google Scholar 

  • Kuroki Y, Juvvadi PR, Arioka M, Nakajima H, Kitamoto K (2002) Cloning and characterization of vmaA, the gene encoding a 69-kDa catalytic subunit of the vacuolar H+-ATPase during alkaline pH mediated growth of Aspergillus oryzae. FEMS Microbiol Lett 209:277–282

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Leng X-H, Newman PR, Vasilyeva E, Kane PM, Forgac M (1997) Site-directed mutagenesis of the yeast V-ATPase A subunit. J Biol Chem 272:11750–11756

    Article  CAS  PubMed  Google Scholar 

  • Manolson MF, Proteau D, Preston RA, Stenbit A, Roberts BT, Hoyt MA, Preuss D, Mulholland J, Botstein D, Jones EW (1992) The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H+-ATPase. J Biol Chem 267:14294–14303

    CAS  PubMed  Google Scholar 

  • Manolson MF, Wu B, Proteau D, Taillon BE, Roberts BT, Hoyt MA, Jones EW (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H+-ATPase subunit Vph1p. J Biol Chem 269:14064–14074

    CAS  PubMed  Google Scholar 

  • Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SD (1994) The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77:579–586

    CAS  PubMed  Google Scholar 

  • Morano KA, Klionsky DJ (1994) Differential effects of compartment deacidification on the targeting of membrane and soluble proteins to the vacuole in yeast. J Cell Sci 107:2813–2824

    CAS  PubMed  Google Scholar 

  • Moreno S, Klar A, Nurse P (1990) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol 194:795–823

    Google Scholar 

  • Morishita M, Shimoda C (2000) Positioning of medial actin rings affected by eccentrically located nuclei in a fission yeast mutant having large vacuoles. FEMS Microbiol Lett 188:63–67

    Article  CAS  PubMed  Google Scholar 

  • Morishita M, Morimoto F, Kitamura K, Koga T, Fukui Y, Maekawa H, Yamashita I, Shimoda C (2002) Phosphatidylinositol 3-phosphate 5-kinase is required for the cellular response to nutritional strarvation and mating pheromone signals in Schizosaccharomyces pombe. Genes Cells 7:199-215

    Article  CAS  PubMed  Google Scholar 

  • Munn AL, Riezman H (1994) Endocytosis is required for the growth of vacuolar H+-ATPase-defective yeast: idetification of six new END genes. J Cell Biol 127:373–386

    CAS  PubMed  Google Scholar 

  • Murray JM, Johnson DI (2001) The Cdc42p GTPase and its regulators of Nrf1p and Scd1p are involved in endocytic trafficking in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276:3004–3009

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Nakamura-Kubo M, Hirata A, Shimoda C (2001) The Schizosaccharomyces pombe spo3 + gene is required for assembly of the forespore membrane and genetically interacts with psy1 +-encoding syntaxin-like protein. Mol Biol Cell 12:3955–3972

    CAS  PubMed  Google Scholar 

  • Nelson H, Nelson N (1990) Disruption of genes encoding subunits of yeast vacuolar H+-ATPase causes conditional lethality. Proc Natl Acad Sci USA 87:3503–3507

    Google Scholar 

  • Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases—Nature’s most versatile proton pumps. Nature Rev 3:94–103

    Article  CAS  Google Scholar 

  • Oka T, Futai M (2000) Requirement of V-ATPase for ovulation and embryogenesis in Caenorhabditis elegans. J Biol Chem 275:29556–29561

    Article  CAS  PubMed  Google Scholar 

  • Okorokov LA, Silva FE, Façanha ALO (2001) Ca2+ and H+ homeostasis in fission yeast: a role of Ca2+/H+ exchange and distinct V-H+-ATPases of the secretory pathway organelles. FEBS Lett 505:321–324

    Article  CAS  PubMed  Google Scholar 

  • Ohya Y, Ohsumi Y, Anraku Y (1986) Isolation and characterization of Ca2+-sensitive mutants of Saccharomyces cerevisiae. J Gen Microbiol 132:979–988

    CAS  PubMed  Google Scholar 

  • Ohya Y, Umemoto N, Tanida I, Ohta A, Iida H, Anraku Y (1991) Calcium-sensitive cls mutants of Saccharomyces cerevisiae showing a Pet- phenotype are ascribable to defects of vacuolar membrane H+-ATPase activity. J Biol Chem 266:13971–13977

    CAS  PubMed  Google Scholar 

  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonaldo G, Ow DW (1992) Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11:3491–3499

    CAS  PubMed  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  PubMed  Google Scholar 

  • Perzov N, Padler-Karavani V, Nelson H, Nelson N (2002) Characterization of yeast V-ATPase mutants lacking Vph1p or Stv1p and the effect on endocytosis. J Exp Biol 205:1209–1219

    CAS  PubMed  Google Scholar 

  • Peters C, Bayer MJ, Bühler S, Anderson JS, Mann M, Mayer A (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409:581–588

    Article  CAS  PubMed  Google Scholar 

  • Petersen J, Nielsen O, Egel R, Hagan IM (1998) F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe. J Cell Sci 111:867–876

    CAS  PubMed  Google Scholar 

  • Plant PJ, Manolson MF, Grinstein S, Demaurex N (1999) Alternative mechanisms of vacuolar acidification in H+-ATPase-deficient yeast. J Biol Chem 274:37270–37279

    Article  CAS  PubMed  Google Scholar 

  • Pujol N, Bonnerot C, Ewbank JJ, Kohara Y, Thierry-Mieg D (2001) The Caenorhabditis elegans unc-32 gene encodes alternative forms of a vacuolar ATPase a subunit. J Biol Chem 276:11913–11921

    Article  CAS  PubMed  Google Scholar 

  • Ramsay LM, Gadd GM (1997) Mutants of Saccharomyces cerevisiae defective in vacuolar function confirm a role for the vacuole in toxic metal ion detoxification. FEMS Microbiol Lett 152:293–298

    Article  CAS  PubMed  Google Scholar 

  • Roberts CJ, Raymond CK, Yamashiro CT, Stevens TH (1991) Methods for studying the yeast vacuole. In: Guthrie C, Fink GR (eds) Guide to yeast genetics and molecular biology. Academic Press, San Diego, pp 644–661

  • Russell P, Nurse P (1986) Schizosaccharomyces pombe and Saccharomyces cerevisiae: a look at yeasts divided. Cell 45:781–782

    CAS  PubMed  Google Scholar 

  • Scimeca J-C, Franchi A, Trojani C, Parrinello H, Grosgeorge J, Robert C, Jaillon O, Poirier C, Gaudray P, Carle GF (2000) The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic ( oc/oc) mutants. Bone 26:207–213

    Article  CAS  PubMed  Google Scholar 

  • Stevens TH, Forgac M (1997) Structure, function and regulation of the vacuolar (H+)-ATPase. Annu Rev Cell Dev Biol 13:779–808

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Hatakeyama T (2001) High efficiency transformation of Schizosaccharomyces pombe pretreated with thiol compounds by electroporation. Yeast 18:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Suga M, Isobe M, Hatakeyama T (2000) Cryopreservation of competent intact yeast cells for efficient electroporation. Yeast 16:889–896

    Article  CAS  PubMed  Google Scholar 

  • Szczypka M, Zhu Z, Silar P, Thiele DJ (1997) Saccharomyces cerevisiae mutants altered in vacuole function are defective in copper detoxification and iron-responsive gene transcription. Yeast 13:1423–1435

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi M, Iwaihara O, Ohtani Y, Ohuchi N, Sakurai J, Morita T, Iwahara S, Takegawa K (1997) Vacuolar protein sorting in fission yeast: cloning, biosynthesis, transport, and processing of carboxypeptidase Y from Schizosaccharomyces pombe. J Bacteriol 179:4179–4189

    CAS  PubMed  Google Scholar 

  • Takegawa K, DeWald DB, Emr SD (1995) Schizosaccharomyces pombe Vps34p, a phosphatidylinositol-specific PI 3-kinase essential for normal cell growth and vacuole morphology. J Cell Sci 108:3745–3756

    CAS  PubMed  Google Scholar 

  • Takegawa K, Tokutomi S, Bhuiyan MSA, Tabuchi M, Fujita Y, Iwaki T, Utsumi S, Tanaka N (2003) Heterologous expression and characterization of Schizosaccharomyces pombe vacuolar carboxypeptidase Y in Saccharomyces cerevisiae. Curr Genet 42:252–259

    CAS  PubMed  Google Scholar 

  • Tanida I, Hasegawa A, Iida H, Ohya Y, Anraku Y (1995) Cooperation of calcineurin and vacuolar H+-ATPase in intracellular Ca2+ homeostasis of yeast cells. J Biol Chem 270:10113–10119

    Article  CAS  PubMed  Google Scholar 

  • Toyama R, Goldstein DJ, Schlegel R, Dhar R (1991) A genomic sequence of the Schizosaccharomyces pombe 16 kDa vacuolar H+-ATPase. Yeast 7:989–991

    CAS  PubMed  Google Scholar 

  • Umemoto N, Yoshihisa T, Hiratat R, Anraku Y (1990) Roles of the VMA3 gene product, subunit c of the vacuolar membrane H+-ATPase on vacuolar acidification and protein transport. A study with VMA3 -disrupted mutants of Saccharomyces cerevisiae. J Biol Chem 265:18447–18453

    CAS  PubMed  Google Scholar 

  • Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128:779–792

    Google Scholar 

  • Whitacre JL, Davis DA, Toenjes KA, Brower SM, Adams AEM (2001) Generation of an isogenic collection of yeast actin mutants and identification of three interrelated phenotypes. Genetics 157:533–543

    CAS  PubMed  Google Scholar 

  • Xie Y, Coukell MB, Gombos Z (1996) Antisense RNA inhibition of the putative vacuolar H+-ATPase proteolipid of Dictyostelium reduces intracellular Ca2+ transport and cell viability. J Cell Sci 109:489–497

    CAS  PubMed  Google Scholar 

  • Yamamoto A, DeWald DB, Boronenkov IV, Anderson RA, Emr SD, Koshland D (1995) Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 6:525–539

    CAS  PubMed  Google Scholar 

  • Yamashiro CT, Kane PM, Wolczyk DF, Preston RA, Stevens TH (1990) Role of vacuolar acidification in protein sorting and zymogen activation: a genetic analysis of the yeast vacuolar proton-translocating ATPase. Mol Cell Biol 10:3737–3749

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Yuko Giga-Hama for providing the S. pombe strain and to Dr. Taro Nakamura for providing the plasmids. This work was partly supported by the Project for Development of a Technological Infrastructure for Industrial Bioprocesses on R&D of New Industrial Science and Technology Frontiers by the Ministry of Economics, Trade and Industry (METI) and by a fellowship from the New Energy and Industrial Technology Development Organization (NEDO)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Takegawa.

Additional information

Communicated by M. Johnston

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwaki, T., Goa, T., Tanaka, N. et al. Characterization of Schizosaccharomyces pombe mutants defective in vacuolar acidification and protein sorting. Mol Genet Genomics 271, 197–207 (2004). https://doi.org/10.1007/s00438-003-0971-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-003-0971-7

Keywords

Navigation