Skip to main content
Log in

Genomic diversity of cercarial clones of Himasthla elongata (Trematoda, Echinostomatidae) determined with AFLP technique

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The aim of this study was to reveal genomic diversity formed during parthenogenetic reproduction of rediae of the trematode Himasthla elongata in its molluskan host Littorina littorea. We applied amplification fragment length polymorphism (AFLP) to determine the genomic diversity of individual cercariae within the clone, that is, the infrapopulation of parthenogenetic progeny in a single molluskan host. The level of genomic diversity of particular cercariae isolates from a single clone, detected with EcoR1/Mse1 AFLP reaction, was significantly lower than the variability of cercariae from different clones. The presence of intraclonal genomic diversity indicates a nonsexual shuffle of alleles during parthenogenesis in the rediae of H. elongata. The obtained polymorphic AFLP fragments were long enough to detect the sequences that may be responsible for clonal genomic variability. Based on this, AFLP can be recommended as a tool for the study of genetic mechanisms of this variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bayne CJ, Grevelding CG (2003) Cloning of Schistosoma mansoni sporocysts in vitro and detection of genetic heterogeneity among individuals within clones. J Parasitol 89(5):1056–1060. doi:10.1645/GE-3186RN

    Article  CAS  PubMed  Google Scholar 

  • Behura SK (2012) Individual analysis of transposon polymorphisms by AFLP. Mobile genetic elements (Ed. Yves Bigot) series. Methods Mol Biol 859:155–167. doi:10.1007/978-1-61779-603-6_8

    Article  CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick MH, Davis RW (1980) Construction of a genetic map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. doi:10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  • Davies CM, Webster JP, Krüger O, Munatsi A, Ndamba J, Woolhouse ME (1999) Host-parasite population genetics: a cross-sectional comparison of Bulinus globosus and Schistosoma haematobium. Parasitology 119(3):295–302. doi:10.1017/S0031182099004722

    Article  PubMed  Google Scholar 

  • Dobrovolskij AA, Ataev GL (2003) The nature of reproduction of trematodes rediae and sporocysts. In: Combes C, Jourdane J (eds) Hommage à Louis Euzet—taxonomy, ecology, and evolution of metazoan parasites, vol 1. Presses Universitaires de Perpignan, Perpignan, pp 273–290. doi:10.1007/s00436-014-3760-9

    Google Scholar 

  • Drew AC, Brindley PJ (1995) Female-specific sequences isolated from Schistosoma mansoni by representational difference analysis. Mol Biochem Parasitol 71(2):173–181. doi:10.1016/0166-6851(95)00048-6

    Article  CAS  PubMed  Google Scholar 

  • Frascaroli E, Schrag TA, Melchinger AE (2013) Genetic diversity analysis of elite European maize (Zea mays, L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor Appl Genet 126(1):133–141. doi:10.1007/s00122-012-1968-6

    Article  PubMed  Google Scholar 

  • Galaktionov KV, Dobrovolskiy AA (2003) The biology and evolution of trematodes. An essay on the biology, morphology, life cycles, transmissions, and evolution of digenetic trematodes. Kluwer Academic Publisher, The Netherlands

    Google Scholar 

  • Galaktionov KV, Bustnes JO, Bårdsen B-J, Nikolaev KE, Sukhotin AA, Ivanov MV, Wilson JG, Skirnisson K, Saville DH, Regel KV (2015) Factors influencing the distribution of trematode larvae in blue mussels Mytilus edulis in the North Atlantic and Arctic Oceans. Mar Biol 162(1):193–206

    Article  CAS  Google Scholar 

  • Galaktionov NK, Solovyeva AI, Fedorov AV, Podgornaya OI (2013) Trematode Himasthla elongata mariner element (Hemar): structure and applications. J Exp Zool Mol Dev Evol 322(3):142–155. doi:10.1002/jez.b.22553

    Article  CAS  Google Scholar 

  • Grevelding CG (1999) Genomic instability in Schistosoma mansoni. Mol Biochem Parasitol 101:207–216. doi:10.1016/S0166-6851(99)00078-X

    Article  CAS  PubMed  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):art. 4–art. 9, http://palaeo-electronica.org/2001_1/past/issue1_01.htm

    Google Scholar 

  • Keeney DB, Waters JM, Poulin R (2007) Clonal diversity of the marine trematode Maritrema novaezealandensis within intermediate hosts: the molecular ecology of parasite life cycles. Mol Ecol 16(2):431–439

  • Koehler AV, Poulin R (2012) Clone-specific immune reactions in a trematode-crustacean system. Parasitology 139:128–136. doi:10.1017/S0031182011001739

    Article  CAS  PubMed  Google Scholar 

  • Koehler AV, Springer YP, Keeney DB, Poulin R (2011) Intra- and interclonal phenotypic and genetic variability of the trematode Maritrema novaezealandensis. Biol J Linn Soc 103(1):106–116. doi:10.1111/j.1095-8312.2011.01640.x

    Article  Google Scholar 

  • Korsunenko AV, Chrisanfova GG, Ryskov AP, Movsessian SO, Vasilyev VA, Semyenova SK (2010) Detection of European Trichobilharzia schistosomes (T. franki, T. szidati, and T. regenti) based on novel genome sequences. J Parasitol 96(4):802–806. doi:10.1645/GE-2297.1

    Article  CAS  PubMed  Google Scholar 

  • Korsunenko A, Chrisanfova G, Lopatkin A, Beer SA, Voronin M, Ryskov A, Semyenova S (2012) Genetic differentiation of cercariae infrapopulations of the avian schistosome Trichobilharzia szidati based on RAPD markers and mitochondrial cox1 gene. Parasitol Res 110(2):833–841. doi:10.1007/s00436-011-2562-6

    Article  PubMed  Google Scholar 

  • Levakin IA, Losev EA, Nikolaev KE, Galaktionov KV (2013) In vitro encystment of Himasthla elongata cercariae (Digenea, Echinostomatidae) in the haemolymph of blue mussels Mytilus edulis as a tool for assessing cercarial infectivity and molluscan susceptibility. J Helminthol 87(2):180–188. doi:10.1017/S0022149X1200017X

    Article  CAS  PubMed  Google Scholar 

  • Loker ES (2010) Gastropod immunobiology. Invertebr Immun 708:17–43. doi:10.1007/978-1-4419-8059-5_2

    Article  CAS  Google Scholar 

  • Masiga DK, Tait A, Turner CM (2000) Amplified restriction fragment length polymorphism in parasite genetics. Parasitol Today 16(8):350–353. doi:10.1016/S0169-4758(00)01706-3

    Article  CAS  PubMed  Google Scholar 

  • Minchella DJ, Sollenberger KM, Pereira de Souza C (1995) Distribution of schistosome genetic diversity within molluscan intermediate hosts. Parasitology 111(Pt 2):217–220. doi:10.1017/S0031182000064970

    Article  PubMed  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14(10):389–394. doi:10.1016/S0169-5347(99)01659-6

    Article  PubMed  Google Scholar 

  • Prokofiev VV, Levakin IA, Losev EA, Zavirinskiy IV, Galaktionov KV (2011) Clonal variability in expression of geo- and photoorientation in cercariae of Himasthla elongata (Trematoda: Echinostomatidae). Parazitologiia 45(5):345–357

    Google Scholar 

  • Tolstenkov OO, Prokofiev VV, Terenina NB, Gustafsson MK (2011) The neuro-muscular system in cercaria with different patterns of locomotion. Parasitol Res 108(5):1219–1227. doi:10.1007/s00436-010-2166-6

    Article  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, N.Y. ISBN: 0879695773

  • Semyenova SK, Khrisanfova GG, Korsunenko AV, Voronin MV, Beer SV, Vodyanitskaya SV, Serbina EA, Yurlova NI, Ryskov AP (2007) Multilocus variation in cercariae, parthenogenetic progeny of different species of the class Trematoda. Dokl Biol Sci 414:235–238. doi:10.1134/S0012496607030192

    Article  CAS  PubMed  Google Scholar 

  • Semyenova SK, Chrisanfova GG, Guliaev AS, Yesakova AP, Ryskov AP (2015) Structural and population polymorphism of RT-like sequences in avian schistosomes Trichobilharzia szidati (Platyhelminthes: Digenea: Schistosomatidae). Biomed Res Int 2015:315312. doi:10.1155/2015/315312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shalaby I, Gherbawy Y, Banaja A (2011) Genetic diversity among Schistosoma mansoni population in the western region of Saudi Arabia. Trop Biomed 28(1):90–101

    CAS  PubMed  Google Scholar 

  • Solovyeva AI, Galaktionov NK, Podgornaya OI (2013) LINE class retroposon is the component of the DNA polymorphic fragments pattern of trematode Himasthla elongata parthenitae. Tsitologiya 55(7):492–500

    CAS  Google Scholar 

  • Thormann CE, Ferreira ME, Camargo LEA, Tivang JG, Osborn TC (1994) Comparison of RFLP and RAPD markers to estimating genetic relationships within and among cruciferous species. Theor Appl Genet 88:973–980. doi:10.1007/BF00220804

    Article  CAS  PubMed  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster P, Mansour TE, Bieber D (1989) Isolation of a female-specific, highly repeated Schistosoma mansoni DNA probe and its use in an assay of cercarial sex. Mol Biochem Parasitol 36(3):217–222. doi:10.1016/0166-6851(89)90169-2

    Article  CAS  PubMed  Google Scholar 

  • Woolhouse ME, Chandiwana SK, Bradley M (1990) On the distribution of schistosome infections among host snails. Int J Parasitol 20(3):325–327. doi:10.1016/0020-7519(90)90147-F

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grants 09-04-01145-a and 16-04-00753-a) and Russian Scientific Fund (grant 15-15-20026). We deeply appreciate the constant support of the White Sea Biological Station of the Zoological Institute RAS Kartesh. We are grateful to the anonymous reviewers for their useful suggestions. The work was partially carried out at the Development of Molecular and Cellular Technologies Resource Center at the St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Galaktionov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galaktionov, N.K., Podgornaya, O.I., Strelkov, P.P. et al. Genomic diversity of cercarial clones of Himasthla elongata (Trematoda, Echinostomatidae) determined with AFLP technique. Parasitol Res 115, 4587–4593 (2016). https://doi.org/10.1007/s00436-016-5249-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5249-1

Keywords

Navigation