Skip to main content
Log in

The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Aedes aegypti (L.) is an important dengue, chikungunya, and yellow fever vector. Immature stages of this species inhabit human-made containers placed in residential landscapes, and the application of larvicides inside containers that cannot be eliminated is still considered a priority in control programs. Larvicidal efficacy is influenced by several factors, including the formulation used, the water quality, and the susceptibility of larvae, among others. If an attractant can be incorporated into a slow-release larvicide formulation, it will be feasible to direct the larvae into the source of insecticide and thereby improving its efficacy. We studied the influence of 1-octen-3ol and 3-methylphenol on the rate of Ae. aegypti larvae mortality using the larvicides Bacillus thuringiensis var. israelensis (Bti), temephos, and spinosad. These chemicals were combined with the larvicides mixed with agar during the bioassays. Mortality was registered every 10 min, and a lethal time 50 (LT50) was calculated. The inclusion of the Ae. aegypti larvae attractants with the larvicides into a solid agar matrix improved their efficiency obtaining a strong and marked reduction in the LT50 compared with the use of larvicides alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aly C (1985) Feeding rate of larval Aedes vexans stimulated by food substances. J Am Mosq Control Assoc 1:506–510

    CAS  PubMed  Google Scholar 

  • Ang KT, Satwant S (2001) Epidemiology and new initiatives in the prevention and control of dengue in Malaysia. Dengue Bull 25:7–14

    Google Scholar 

  • Barber JT, Burnton CP (1983) Chemotaxis of Culex pipiens quinquefasciatus larvae (Diptera: Culicidae) in response to amino acids. J Med Entomol 20:641–643

    Article  CAS  Google Scholar 

  • Barrera R (1996) Competition and resistance to starvation in larvae of container‐inhabiting Aedes mosquitoes. Ecol Entomol 21(2):117–127

    Article  Google Scholar 

  • Braga IA, Lima JBP, Soares SS, Valle D (2004) Aedes aegypti resistance to temephos during 2001 in several municipalities in the states of Rio de Janeiro, Sergipe and Alagoass, Brazil. Mem Inst Oswaldo Cruz 99:199–203

    Article  PubMed  Google Scholar 

  • Bret BL, Larson LL, Schoonover JR, Sparks TC, Thompson GD (1997) Biological properties of spinosad. Down Earth 52(1):6–13

    Google Scholar 

  • Cetin H, Yanikoglu A, Cilek JE (2005) Evaluation of the naturally-derived insecticide spinosad against Culex pipiens L.(Diptera: Culicidae) larvae in septic tank water in Antalya, Turkey. J Vector Ecol 30(1):151

    PubMed  Google Scholar 

  • Chadee DD, Ward RA, Novak RJ (1998) Natural habitats of Aedes aegypti in the Caribbean—a review. J Am Mosq Control 14(1):5–11

    CAS  Google Scholar 

  • Chunsuttiwat S, Wasakarawa S (1994) Dengue vector control in Thailand: development towards environmental protection. Gaoxiong Yi Xue Ke Xue Za Zhi 10:122–123

    Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2006) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52(1):375

    Article  Google Scholar 

  • Coosemans M, Carnevale P (1995) Malaria vector control: a critical review on chemical methods and insecticides. Ann Soc Belg Med Trop 75:13–31

    CAS  PubMed  Google Scholar 

  • Curtis CF, Hill N (1988) Comparison of methods of repelling mosquitoes. Entomol Exp Appl 49(1–2):175–179

    Article  Google Scholar 

  • Federici, BA, Wu D (1994) Synergism of insecticidal activity of Bacillus thuringiensis. In:R. Akhurst (ed.). Proc 2nd Canberra Bacillus thuringiensis meeting

  • Gonzalez PV, Gonzlez Audino PA, Masuh HM (2015) Behavioral response of Aedes aegypti (Diptera: Culicidae) larvae to synthetic and natural attractants and repellents. J Med Entomol. doi:10.1093/jme/tjv136

    Google Scholar 

  • Gratz NG (1999) Emerging and resurging vector-borne diseases. Annu Rev Entomol 44(1):51–75

    Article  CAS  PubMed  Google Scholar 

  • Harburguer LV, Seccacini E, Masuh H, Gonzalez Audino P, Zerba E, Licastro S (2009) Thermal behaviour and biological activity against Aedes aegypti (Diptera: Culicidae) of permethrin and pyriproxyfen in a smoke-generating formulation. Pest Manag Sci 65:1208–1214

    Article  CAS  PubMed  Google Scholar 

  • Hertlein MB, Mavrotas C, Jousseaume C, Lysandrou M, Thompson GD, Jany W, Ritchie SA (2010) A review of spinosad as a natural product for larval mosquito control. J Am Mosq Control 26(1):67–87

    Article  CAS  Google Scholar 

  • Hwang YS, Kramer WL, Mulla MS (1980) Oviposition attractants and repellents of mosquitoes. Isolation and identification of oviposition repellents for Culex mosquitoes. J Chem Ecol 6:71–80

    Article  CAS  Google Scholar 

  • Kovendan K, Murugan K, Kumar AN, Vincent S, Hwang JS (2012) Bioefficacy of larvicidal and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 110(2):669–678

    Article  PubMed  Google Scholar 

  • Litchfield JA, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96(2):99–113

    CAS  PubMed  Google Scholar 

  • Majori G, Sabatinelli G, Villani F, Petrarca V (1986) Studies on insecticide susceptibility of Anopheles gambiae and Culex quinquefasciatus in the area of Ouagadougou, Burkina Faso (west Africa). J Am Mosq Control 2:305–309

    CAS  Google Scholar 

  • Menger DJ, Otieno B, De Rijk M, Mukabana WR, Van Loon JJ, Takken W (2014) A push-pull system to reduce house entry of malaria mosquitoes. Malar J 13:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Merritt RW, Dadd RH, Walker ED (1992) Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol 37:349–376

    Article  CAS  PubMed  Google Scholar 

  • Ocampo CB, Salazar-Terreros MJ, Mina NJ, Mc Allister S, Brogdon W (2011) Insecticide resistance status of Aedes aegypti in 10 localities in Colombia. Acta Trop 118(1):37–44

    Article  CAS  PubMed  Google Scholar 

  • Patil CD, Patil SV, Salunke BK, Salunkhe RB (2012) Insecticidal potency of bacterial species Bacillus thuringiensis SV2 and Serratia nematodiphila SV6 against larvae of mosquito species Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus. Parasitol Res 110(5):1841–1847

    Article  PubMed  Google Scholar 

  • Pilger D, De Maesschalckm M, Horstick O, San Martin JL (2010) Dengue outbreak response: documented effective interventions and evidence gaps. insectTropIKA.net. http://journal.tropika.net/pdf/tropika/v1n1/a02v1n1.pdf

  • Sadanandane C, Boopathi Doss PS, Jambulingam P, Zaim M (2009) Efficacy of two formulations of the bioinsecticide spinosad against Culex quinquefasciatus in India. J Am Mosq Control 25(1):66–73

    Article  CAS  Google Scholar 

  • Saunders DG, Bret BL (1997) Fate of spinosad in the environment. Down Earth 52(1):14–20

    Google Scholar 

  • Scott T, Morrison A, Lorenz L, Clark G, Strickman D, Kittayapong P (2000) Longitudinal studies of Aedes agypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 32:77–88

    Article  Google Scholar 

  • Seccacini E, Masuh H, Licastro S, Zerba E (2006) Laboratory and scaled up evaluation of cis-permethrin applied as a new ultra low volume formulation against Aedes aegypti (Diptera: Culicidae). Acta Trop 97:1–4

    Article  CAS  PubMed  Google Scholar 

  • Service MW (1992) Importance of ecology in Aedes aegypti control. Southeast Asian J Trop Med Public Health 23:681–690

    PubMed  Google Scholar 

  • Skovmand O, Thiery I, Benzon GL, Sinegre G, Monteny N, Becker N (1998) Potency of products based on Bacillus thuringiensis var. israelensis: interlaboratory variations. J Am Mosq Control 14(3):298–304

    CAS  Google Scholar 

  • Swaddiwudhipong W, Lerdlukanavonge P, Khumklam P, Koonchote S, Nguntra P, Chaovakiratipong C (1992) A survey of knowledge, attitude and practice of the prevention of dengue hemorrhagic fever in an urban community of Thailand. Southeast Asian J Trop Med Public Health 23:207–211

    CAS  PubMed  Google Scholar 

  • Thomas MB, Godfray HC, Read AF, Van Den Berg H, Tabashnik BE, van Lenteren JC, Wage JK, Takken W (2012) Lessons from agriculture for the sustainable management of malaria vectors. PLoS Med 9(7), e1001262

    Article  PubMed  PubMed Central  Google Scholar 

  • Tikar SN, Kumar A, Prasad GBKS, Prakash S (2009) Temephos-induced resistance in Aedes aegypti and its cross-resistance studies to certain insecticides from India. Parasitol Res 105(1):57–63

    Article  CAS  PubMed  Google Scholar 

  • Tikar SN, Yadav R, Mendki MJ, Rao AN, Sukumaran D, Parashar BD (2014) Oviposition deterrent activity of three mosquito repellents diethyl phenyl acetamide (DEPA), diethyl m toluamide (DEET), and diethyl benzamide (DEB) on Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. Parasitol Res 113(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Walker K, Lynch M (2007) Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of achievements and potential. Med Vet Entomol 21:2–21

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2006a) Report of the scientific working group meeting on dengue. TDR/SWG/08, Geneva, Switzerland

  • World Health Organization (WHO) (2006b) Pesticides and their application: for the control of vectors and pests of public health importance. 6th ed, Geneva, Switzerland

  • World Health Organization (WHO) (2007a) Methoprene in drinking-water: use for vector control in drinking-water sources and containers—background document for development of WHO guidelines for drinking-water quality WHO/SDE/NSM/07.01/11

  • World Health Organization (WHO) (2007b) Novaluron in drinking-water: use for vector control in drinking-water sources and containers—background document for development of WHO guidelines for drinking-water quality WHO/SDE/WSH/07.01/11

  • World Health Organization (WHO) (2008) Pyriproxyfen in drinking-water: use for vector control in drinking-water sources and containers—background document for development of WHO guidelines for drinking-water quality WHO/HSE/AMR/08.03/9

  • World Health Organization (WHO) (2009) Temephos in drinking-water: use for vector control in drinking-water sources and containers—background document for development of WHO guidelines for drinking-water quality WHO/HSE/WSH/09.01/1

  • World Health Organization (WHO) (2010) Spinosad DT in drinking-water: use for vector control in drinking-water sources and containers—background document for development of WHO guidelines for drinking-water quality WHO/HSE/WSH/10.01/12

  • Xia Y (2008) Molecular and cellular studies of mosquito odorant receptors and olfactory-driven larval behavior, PhD Thesis, Vanderbilt University, Nashville, Tennessee, USA

  • Xue RD, Barnard DR, Ali A (2001) Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito Aedes albopictus. Med Vet Entomol 15(2):126–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study received financial support by the ANPCyT of Argentina (PICT 2008–797). LH, PGA, and HM are members of the CONICET. PG has a grant from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héctor M. Masuh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez, P.V., Harburguer, L., González-Audino, P.A. et al. The use of Aedes aegypti larvae attractants to enhance the effectiveness of larvicides. Parasitol Res 115, 2185–2190 (2016). https://doi.org/10.1007/s00436-016-4960-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-4960-2

Keywords

Navigation