Skip to main content
Log in

Alaria mesocercariae in the tails of red-sided garter snakes: evidence for parasite-mediated caudectomy

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trematodes of the genus Alaria develop into an arrested stage, known as mesocercariae, within their amphibian second intermediate host. The mesocercariae are frequently transmitted to a non-obligate paratenic host before reaching a definitive host where further development and reproduction can occur. Snakes are common paratenic hosts for Alaria spp. with the mesocercariae often aggregating in the host’s tail. In the current study, we used morphological examination and molecular analyses based on partial sequences of nuclear large ribosomal subunit gene and mitochondrial cytochrome C oxidase subunit 1 gene to identify larvae in the tails of red-sided garter snakes (Thamnophis sirtalis parietalis) as mesocercariae of Alaria marcianae, Alaria mustelae, and Alaria sp. as well as metacercariae of Diplostomidae sp. of unknown generic affiliation. We assessed infection prevalence, absolute and relative intensity, and associated pathological changes in these snakes. Infection prevalence was 100 % for both male and female snakes. Infection intensity ranged from 11 to more than 2000 mesocercariae per snake tail but did not differ between the sexes. Gross pathological changes included tail swelling while histopathological changes included mild inflammation and the presence of mucus-filled pseudocysts surrounding mesocercariae, as well as the compression and degeneration of muscle fibers. Our results indicate that mesocercariae can lead to extensive muscle damage and loss in both sexes which likely increases the fragility of the tail making it more prone to breakage. As tail loss in garter snakes can affect both survival and reproduction, infection by Alaria mesocercariae clearly has serious fitness implications for these snakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aleksiuk M, Stewart KW (1971) Seasonal changes in the body composition of the garter snake (Thamnophis sirtalis parietalis) at northern lattitudes. Ecology 52:485–490. doi:10.2307/1937631

    Article  Google Scholar 

  • Anthony RM, Rutitzky LI, Urban JF, Stadecker MJ, Gause WC (2007) Protective immune mechanisms in helminth infection. Nat Rev Immunol 7:975–987

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Behm CA, Ovington KS (2000) The role of eosinophils in parasitic helminth infections: insights from genetically modified mice. Parasitol Today 16:202–209

    Article  CAS  PubMed  Google Scholar 

  • Bosma NJ (1934) The life history of the trematode Alaria mustelae, Bosma, 1931. Trans Am Microsc Soc 53:116–153. doi:10.2307/3222088

    Article  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

    Article  CAS  PubMed  Google Scholar 

  • Chandler AC (1942) The morphology and life cycle of a new strigeid, Fibricola texensis, parasitic in raccoons. Trans Am Microsc Soc 61:156–167

    Article  Google Scholar 

  • Cooper WE, Alfieri KJ (1993) Caudal autotomy in the eastern garter snake, Thamnophis s. sirtalis. Amphibia-Reptilia 14:86–89

    Article  Google Scholar 

  • Fernandes BJ, Cooper JD, Cullen JB, Freeman RS, Ritchie AC, Scott AA, Stuart PF (1976) Systemic infection with Alaria americana (Trematoda). Can Med Assoc J 115:1111–1114

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandes FR, Cruz LD, Linhares AX (2012) Effects of sex and locality on the abundance of lice on the wild rodent Oligoryzomys nigripes. Parasitol Res 111:1701–1706

    Article  PubMed  Google Scholar 

  • Fitch HS (2003) Tail loss in garter snakes. Herpetol Rev 34:212–213

    Google Scholar 

  • Foster N, Elsheikha HM (2012) The immune response to parasitic helminths of veterinary importance and its potential manipulation for future vaccine control strategies. Parasitol Res 110:1587–1599

    Article  PubMed  Google Scholar 

  • Freeman RS, Stuart PF, Cullen JB, Ritchie AC, Mildon A, Fernandes BJ, Bonin R (1976) Fatal human infection with mesocercariae of the trematode Alaria americana. Am J Trop Med Hyg 25:803–807

    CAS  PubMed  Google Scholar 

  • Goldberg SR, Bursey CR (2002) Gastrointestinal helminths of the blackneck garter snake, Thamnophis cyrtopsis (Colubridae). West N Am Naturalist 62:243–245

  • Gregory PT, Stewart KW (1975) Long-distance dispersal and feeding strategy of the red-sided garter snake (Thamnophis sirtalis parietalis) in the Interlake of Manitoba. Can J Zool 53:238–245

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

  • Hofer DP, Johnson AD (1970) Alaria mustelae, A. marcianae, and A. arisaemoides: chemical nature of mesocercarial capsule. Trans Am Microsc Soc 89:254–259. doi:10.2307/3224382

    Article  Google Scholar 

  • Jiménez-Ruiz FA, García-Prieto L, De León GPP (2009) Helminth infracommunity structure of the sympatric garter snakes Thamnophis eques and Thamnophis melanogaster from the Mesa Central of Mexico. J Parasitol 88:454–460

    Article  Google Scholar 

  • Johnson A (1968) Life History of Alaria marcianae (La Rue, 1917) Walton, 1949 (Trematoda: Diplostomatidae). J Parasitol 54:324–332

    Article  CAS  PubMed  Google Scholar 

  • Johnson AD (1979) Morphology and Life History of Alaria mustelae Bosma 1931 (Trematoda: Diplostomatidae) from Minnesota Mustelids. J Parasitol 65:154–160

    Article  CAS  PubMed  Google Scholar 

  • Klein SL (2000) Hormones and mating system affect sex and species differences in immune function among vertebrates. Behav Process 51:149–166

    Article  Google Scholar 

  • Klion AD, Nutman TB (2004) The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol 113:30–37

    Article  CAS  PubMed  Google Scholar 

  • La Rue GR (1917) Two new larval trematodes from Thamnophis marciana and Thamnophis eques. Occas Pap Mus Zool Univ Mich 35:1–14

    Google Scholar 

  • Lafferty KD (1999) The evolution of trophic transmission. Parasitol Today 15:111–115

    Article  CAS  PubMed  Google Scholar 

  • Locke SA, McLaughlin JD, Lapierre AR, Johnson PTJ, Minchella DJ (2011) Linking larvae and adults of Apharyngostrigea cornu, Hysteromorpha triloba, and Alaria mustelae (Diplostomoidea: Digenea) using molecular data. J Parasitol 97:846–851. doi:10.1645/GE-2775.1

    Article  PubMed  Google Scholar 

  • Matuschka F-R, Bannert B (1987) Cannibalism and autotomy as predator–prey relationship for monoxenous sarcosporidia. Parasitol Res 74:88–93

    Article  CAS  PubMed  Google Scholar 

  • McClelland EE, Smith JM (2011) Gender specific differences in the immune response to infection. Arch Immunol Ther Exp 59:203–213. doi:10.1007/s00005-011-0124-3

    Article  Google Scholar 

  • Möhl K, Große K, Hamedy A, Wüste T, Kabelitz P, Lücker E (2009) Biology of Alaria spp. and human exposition risk to Alaria mesocercariae—a review. Parasitol Res 105:1–15. doi:10.1007/s00436-009-1444-7

    Article  PubMed  Google Scholar 

  • Moszczynska A, Locke SA, McLaughlin JD, Marcogliese DJ, Crease TJ (2009) Development of primers for the mitochondrial cytochrome c oxidase i gene in digenetic trematodes (Platyhelminthes) illustrates the challenge of barcoding parasitic helminths. Mol Ecol Resour 9 (Suppl. 1): 75–82. doi:10.1111/j.1755-0998.2009.02634.x

  • Odlaug TO (1940) Morphology and life history of the trematode, Alaria intermedia. Trans Am Microsc Soc 59:490–510. doi:10.2307/3222994

    Article  Google Scholar 

  • Olivier L, Odlaug TO (1938) Mesocercaria intermedia n. sp. (Trematoda: Strigeata) with a note on its further development. J Parasitol 24:369–374

    Article  Google Scholar 

  • Pearson JC (1956) Studies on the life cycles and morphology of the larval stages of Alaria arisaemoides Augustine and Uribe, 1927 and Alaria canis LaRue and Fallis, 1936 (Trematoda: Diplostomidae). Can J Zool 34:295–387

    Article  Google Scholar 

  • Perry-Richardson JJ, Schofield CW, Ford NB (1990) Courtship of the garter snake, Thamnophis marcianus, with a description of a female behavior for coitus interruption. J Herpetol 24:76–78. doi:10.2307/1564292

    Article  Google Scholar 

  • Pisani GR (1976) Comments on the courtship and mating mechanics of Thamnophis (Reptilia, Serpentes, Colubridae). J Herpetol 10:139–142. doi:10.2307/1562795

    Article  Google Scholar 

  • Placyk JS, Burghardt GM (2005) Geographic variation in the frequency of scarring and tail stubs in eastern gartersnakes (Thamnophis s. sirtalis) from Michigan, USA. Amphibia-Reptilia 26:353–358. doi:10.1163/156853805774408568

    Article  Google Scholar 

  • Portier J, Vallée I, Lacour SA, Martin-Schaller R, Ferté H, Durand B (2014) Increasing circulation of Alaria alata mesocercaria in wild boar populations of the Rhine Valley, France, 2007–2011. Vet Parasitol 199:153–159. doi:10.1016/j.vetpar.2013.09.029

    Article  PubMed  Google Scholar 

  • Poulin R (1996) Sexual inequalities in helminth infections: a cost of being male? Am Nat 147:287–295

    Article  Google Scholar 

  • Pulis EE, Tkach VV, Newman RA (2011) Helminth parasites of the wood frog, Lithobates sylvaticus, in prairie pothole wetlands of the northern Great Plains. Wetlands 31:675–685

    Article  Google Scholar 

  • Rau ME, Gordon DM (1978) Overwintering of helminths in the garter snake (Thamnophis sirtalis sirtalis). Can J Zool 56:1765–1767

    Article  Google Scholar 

  • Riehn K, Hamedy A, Alter T, Lücker E (2011) Development of a PCR approach for differentiation of Alaria spp. mesocercariae. Parasitol Res 108:1327–1332

    Article  PubMed  Google Scholar 

  • Riffkin M, Seow HF, Jackson D, Brown L, Wood P (1996) Defence against the immune barrage: helminth survival strategies. Immunol Cell Biol 74:564–574

    Article  CAS  PubMed  Google Scholar 

  • Sharpilo VP, Tkach VV (1989) Transmammary transmission of Alaria alata mesocercariae (Trematoda, Alariidae) from lactating females of paratenic hosts to offspring. Vestn Zool 5:81–83

    Google Scholar 

  • Shine R, Olsson MM, Moore IT, LeMaster MP, Mason RT (1999) Why do male snakes have longer tails than females? Proc R Soc Lond B Biol Sci 266:2147–2151

    Article  Google Scholar 

  • Shine R, Langkilde T, Wall M, Mason RT (2006) Temporal dynamics of emergence and dispersal of garter snakes from a communal den in Manitoba. Wildl Res 33:103–111

    Article  Google Scholar 

  • Shoop WL (1988) Trematode transmission patterns. J Parasitol 74:46–59

    Article  CAS  PubMed  Google Scholar 

  • Shoop WL, Corkum KC (1981) Epidemiology of Alaria marcianae mesocercariae in Louisiana. J Parasitol 67:928–931. doi:10.2307/3280722

    Article  CAS  PubMed  Google Scholar 

  • Shoop WL, Corkum KC (1984) Pathway of mesocercariae of Alaria marcianae (Trematoda) through the mammary glands of lactating mice. J Parasitol 70:333–336. doi:10.2307/3281560

    Article  CAS  PubMed  Google Scholar 

  • Sparkman AM, Palacios MG (2009) A test of life-history theories of immune defence in two ecotypes of the garter snake, Thamnophis elegans. J Anim Ecol 78:1242–1248. doi:10.1111/j.1365-2656.2009.01587.x

    Article  PubMed  Google Scholar 

  • Tăbăran F, Sándor AD, Marinov M, Cătoi C, Mihalca AD (2013) Alaria alata infection in European mink. Emerg Infect Dis 19:1547–1549. doi:10.3201/eid1909.130081

    Article  PubMed Central  PubMed  Google Scholar 

  • Theodoropoulos G, Hicks SJ, Corfield AP, Miller BG, Carrington SD (2001) The role of mucins in host–parasite interactions: part II–helminth parasites. Trends Parasitol 17:130–135

    Article  CAS  PubMed  Google Scholar 

  • Tkach VV, Pawlowski J (1999) A new method of DNA extraction from the ethanol-fixed parasitic worms. Acta Parasitol 44:147–148

    CAS  Google Scholar 

  • Turner HF (1958) The life history of Fibricola cratera (Barker and Noll, 1915) DuBois, 1932 (Trematoda: Diplostomatidae). Iowa State University. Retrospective Theses and Dissertations. Paper 1624. http://lib.dr.iastate.edu/rtd/1624

  • Wasiluk A (2013) Alaria alata infection-threatening yet rarely detected trematodiasis. Diagn Lab 49:33–37

    Google Scholar 

  • Willis L, Threlkeld ST, Carpenter CC (1982) Tail loss patterns in Thamnophis (Reptilia: Colubridae) and the probable fate of injured individuals. Copeia 1982:98. doi:10.2307/1444273

    Article  Google Scholar 

  • Zuk M (2009) The sicker sex. PLoS Pathog 5, e1000267. doi:10.1371/journal.ppat.1000267

    Article  PubMed Central  PubMed  Google Scholar 

  • Zuk M, McKean KA (1996) Sex differences in parasite infections: patterns and processes. Int J Parasitol 26:1009–1024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chris Friesen and Ehren Bentz for help in the field and Leslie Blakemore for assistance in the lab. We also thank Manitoba Conservation, particularly Dave Roberts, for assistance with permits. William Font, Don Nichols, and Mike Kinsella provided help with initial genus-level identification of parasites. Don Nichols also shared many useful thoughts on the host–parasite interaction. Chris Friesen, Richard Whittington, and two anonymous reviewers provided insightful comments on earlier versions of this manuscript.

Compliance with Ethical Standards

All procedures utilized in this research were approved by the Oregon State University Animal Care and Use Committee (ACUP no. 4317). This research complied with guidelines established by the National Institutes of Health Guide for the Care and Use of Laboratory Animals and was carried out under the authority of Manitoba Wildlife Scientific Permit WB12405.

Conflict of interest

The authors declare that they have no conflicts of interest.

Financial support

The molecular portion of this study was supported by a National Institutes of Health grant (R15AI092622) awarded to VVT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily J. Uhrig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uhrig, E.J., Spagnoli, S.T., Tkach, V.V. et al. Alaria mesocercariae in the tails of red-sided garter snakes: evidence for parasite-mediated caudectomy. Parasitol Res 114, 4451–4461 (2015). https://doi.org/10.1007/s00436-015-4686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4686-6

Keywords

Navigation