Skip to main content

Advertisement

Log in

Green synthesis of silver nanoparticles from Cassia roxburghii—a most potent power for mosquito control

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes transmit serious human diseases, causing millions of deaths every year. The use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of synthesized natural products for vector control have been a priority in this area. In the present study, silver nanoparticles (AgNPs) synthesized using Cassia roxburghii plant leaf extract against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus were determined. Larvae were exposed to varying concentrations of synthesized AgNPs (12, 24, 36, 48, and 60 μg/mL) and aqueous leaf extracts (60, 120, 180, 240, and 300 μg/mL) for 24 h. The synthesized AgNPs were characterized by UV–Vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), with energy-dispersive X-ray spectroscopy analysis (EDX), transmission electron microscopy, and X-ray diffraction analysis (XRD). Compare to aqueous extracted synthesized AgNPs showed extensive mortality rate against An. stephensi, Ae. aegypti, and C. quinquefasciatus with the LC50 and LC90 values that were 26.35, 28.67, 31.27 and 48.81, 53.24, and 58.11 μg/mL, respectively. No mortality was observed in the control. This is the first report on mosquito larvicidal activity of plant-synthesized nanoparticles. Thus, the use of C. roxburghii to synthesize silver nanoparticles is a rapid, eco-friendly, and a single-step approach, and the AgNPs formed can be potential mosquito larvicidal agents. Therefore, this study proves that C. roxburghii is a potential bioresource for stable, reproducible nanoparticle synthesis (AgNPs) and also can be used as an efficient mosquito control agent. This is the first report on the larvicidal activity of the plant extract and AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amer A, Mehlhorn H (2006) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  • Amerasan D, Murugan K, Kovendan K, Mahesh Kumar P, Panneerselvam C, Subramaniam J, John William S, Hwang JS (2012) Adulticidal and repellent properties of Cassia tora Linn. (Family: Caesalpinaceae) against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. Parasitol Res 111(5):1953–1964

    Article  PubMed  Google Scholar 

  • Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector-Borne Zoonotic Dis 12(3):262–268

    Article  PubMed  Google Scholar 

  • Bansal SK, Singh KV, Kumar S (2009) Larvicidal activity of the extracts from different parts of the plant Solanum xanthocarpum against important mosquito vectors in the arid region. J Environ Biol 30(2):221–226

    CAS  PubMed  Google Scholar 

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    Article  CAS  PubMed  Google Scholar 

  • Bernhard L, Bernhard P, Magnussen P (2003) Management of patients with lymphoedema caused by filariasis in North–eastern Tanzania: alternative approaches. Physiotherapy 89:743–749

    Article  Google Scholar 

  • Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz 99:541–544

    Article  CAS  PubMed  Google Scholar 

  • Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 89:99–102

    Article  CAS  PubMed  Google Scholar 

  • Duggal JK, Misra K (1982) Anthraquinones of Cassia marginata seeds. Planta Med 45(5):48–50

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1971) Probit analysis, vol 551. Cambridge University Press, London, pp 68–72

    Google Scholar 

  • Govindarajan M (2010a) Larvicidal and repellent activities of Sida acuta Burm. F. (family: Malvaceae) against three important vector mosquitoes. Asian Pac J Trop Med 3(9):691–695

    Article  Google Scholar 

  • Govindarajan M (2010b) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (willd.) Hook. F. Benth (Rutaceae) against three mosquito species. Asian Pac J Trop Med 3:874–877

    Article  CAS  Google Scholar 

  • Govindarajan M (2010c) Larvicidal efficacy of Ficus benghalensis L. plant leaf extracts against Culex quinquefasciatus Say, Aedes aegypti L. and Anopheles stephensi L. (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 14(2):107–111

    CAS  PubMed  Google Scholar 

  • Govindarajan M (2011a) Mosquito larvicidal and ovicidal activity of Cardiospermum halicacabum Linn. (Family: Sapindaceae) Leaf extract against Culex quinquefasciatus (say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 15(7):787–794

    CAS  PubMed  Google Scholar 

  • Govindarajan M (2011b) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac J Trop Med 4(2):106–111

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T (2008a) Larvicidal and ovicidal activity of Cassia fistula Linn. Leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102:289–292

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Jebanesan A, Pushpanathan T, Samidurai K (2008b) Studies on effect of Acalypha indica L. (Euphorbiaceae) leaf extracts on the malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 103(3):691–695

    Article  CAS  PubMed  Google Scholar 

  • Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011) Mosquito larvicidal, ovicidal and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367

    Article  CAS  PubMed  Google Scholar 

  • Hales S, Wet ND, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830–834

    Article  PubMed  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi AV, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194

    Article  PubMed  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Yadav SK (2009) Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol 84:151–157

    Article  CAS  Google Scholar 

  • Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549

    Article  PubMed  Google Scholar 

  • Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:15196

    Article  Google Scholar 

  • Mohanty ABD, Das (2006) Interspecific Genetic Diversity in 15 Species of Cassia L. Evident by Chromosome and 4C Nuclear DNA Analysis. J Bio sci 6(4):664–670

    Article  Google Scholar 

  • Muthukumaran U, Govindarajan M, Rajeswary M, Hoti SL (2015) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res 114(5):1817–27

    Article  PubMed  Google Scholar 

  • Peng Z, Yang J, Wang H, Simons FER (1999) Production and characterization of monoclonal antibodies to two new mosquito Aedes aegypti salivary proteins. Insect Biochem Mol Biol 29:909–914

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshini K, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang J-S, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalarkrishnan G, Saleem G, Arumrgam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vector. Acta Trop 196–203

  • Rastogi P, Mehrotra BN (2002) Compendium of Indian medicinal plants (volume 5).178: 4S

  • Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702

    Article  PubMed  Google Scholar 

  • Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6

    Article  Google Scholar 

  • Senthil Nathan S, Hisham A, Jayakumar G (2008) Larvicidal and growth inhibition of the malaria vector Anopheles stephensi by triterpenes from Dysoxylum malabaricum and Dysoxylum beddomei. Fitoterapia 79(2):106–111

    Article  PubMed  Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2010) Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology. doi:10.3109/17435390.2010.537382

    PubMed  Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    Article  PubMed  Google Scholar 

  • Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera:Culicidae). Parasitol Res 112:487–499

    Article  PubMed  Google Scholar 

  • Swarbrick J, Boylan JC (2002) Plants as drugs-Encyclopaedia of Pharmaceutical Technology Marcel Dekker Inc, New York (2nd edition) 2214–2216

  • Taubitz W, Cramer JP, Kapaun A, Pfeffer M, Drosten C, Dobler G et al (2007) Chikungunya fever in travelers: clinical presentation and course. Clin Infect Dis 45:508

    Google Scholar 

  • Tiwary M, Naik SN, Tewaryb DK, Mittalc PK, Yadavc S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vect Born Dis 44:198–204

    CAS  Google Scholar 

  • Toloza AC, Lucía A, Zerba E, Masuh H, Picollo MI (2010) Eucalyptus essential oil toxicity against permethrin-resistant Pediculus humanus capitis (Phthiraptera: Pediculidae). Parasitol Res 106(2):409–414

    Article  PubMed  Google Scholar 

  • Veerekumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(12):4073–4085

    Article  Google Scholar 

  • Veerekumar K, Govindarajan M, Rajeswary M (2014) Low-cost and ecofriendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785

    Article  Google Scholar 

  • Wernsdorfer G, Wernsdorfer WH (2003) Malaria at the turn from the 2nd to the 3rd millennium. Wien Klin Wochenschr 115:2–9

    PubMed  Google Scholar 

  • Wondji CS, Irving H, Morgan J, Lobo NF, Collins FH, Hunt RH (2009) Two duplicated P450 genes are associated with pyrethroid resistance in Anopheles funestus, a major malaria vector. Genome Res 19:452–459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/1.3

Download references

Acknowledgments

The authors would like to thank Professor and Head of the Department of Zoology, Annamalai University for the laboratory facilities provided. The authors would also like to acknowledge the cooperation of staff members of the VCRC (ICMR), Pondicherry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marimuthu Govindarajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukumaran, U., Govindarajan, M. & Rajeswary, M. Green synthesis of silver nanoparticles from Cassia roxburghii—a most potent power for mosquito control. Parasitol Res 114, 4385–4395 (2015). https://doi.org/10.1007/s00436-015-4677-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4677-7

Keywords

Navigation