Skip to main content
Log in

Interactions of Pseudomonas aeruginosa and Corynebacterium spp. with non-phagocytic brain microvascular endothelial cells and phagocytic Acanthamoeba castellanii

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Several lines of evidence suggest that Acanthamoeba interact with bacteria, which may aid in pathogenic bacterial transmission to susceptible hosts, and these interactions may have influenced evolution of bacterial pathogenicity. In this study, we tested if Gram-negative Pseudomonas aeruginosa and Gram-positive Corynebacterium spp. can associate/invade and survive inside Acanthamoeba castellanii trophozoites and cysts, as well as non-phagocytic human brain microvascular endothelial cells. The results revealed that both Corynebacterium spp. and P. aeruginosa were able to associate as well as invade and/or taken up by the phagocytic A. castellanii trophozoite. In contrast, P. aeruginosa exhibited higher association as well as invasion of non-phagocytic HBMEC compared with Corynebacterium spp. Notably, P. aeruginosa remained viable during the encystment process and exhibited higher levels of recovery from mature cysts (74.54 bacteria per amoebae) compared with Corynebacterium spp. (2.69 bacteria per amoeba) (P < 0.05). As Acanthamoeba cysts can be airborne, these findings suggest that Acanthamoeba is a potential vector in the transmission of P. aeruginosa to susceptible hosts. When bacterial-ridden amoebae were exposed to favourable (nutrient-rich) conditions, A. castellanii emerged as vegetative trophozoites and remained viable, and likewise viable P. aeruginosa were also observed but rarely any Corynebacterium spp. were observed. Correspondingly, P. aeruginosa but not Corynebacterium spp. exhibited higher cytotoxicity to non-phagocytic HBMEC, producing more than 75 % cell death in 24 h, compared to 20 % cell death observed with Corynebacterium spp. Additionally, it was observed that the bacterial conditioned medium had no negative effect on A. castellanii growth. Further characterization of amoebal and bacterial interactions will assist in identifying the role of Acanthamoeba in the transmission and evolution of pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd H, Wretlind B, Saeed A, Idsund E, Hultenby K, Sandström G (2008) Pseudomonas aeruginosa utilises its type III secretion system to kill the free-living amoeba Acanthamoeba castellanii. J Eukaryot Microbiol 55(3):235–243

    Article  PubMed  Google Scholar 

  • Alsam S, Kim KS, Stins M, Rivas AO, Sissons J, Khan NA (2003) Acanthamoeba interactions with human brain microvascular endothelial cells. Microb Pathogen 35:235–241

    Article  CAS  Google Scholar 

  • Collins MD, Hoyles L, Foster G, Falsen E (2004) Corynebacterium caspium sp. nov., from a Caspian seal (Phoca caspica). Int J Syst Evol Microbiol 54:925–928

    Article  CAS  PubMed  Google Scholar 

  • Ferguson MW, Maxwell JA, Vincent TS, da Silva J, Olson JC (2001) Comparison of the exoS gene and protein expression in soil and clinical isolates of Pseudomonas aeruginosa. Infect Immun 69(4):2198–2210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giamarellou H (2000) Therapeutic guidelines for Pseudomonas aeruginosa infections. Int J Antimicrob Agents 16:103–106

    Article  CAS  PubMed  Google Scholar 

  • Greub G, Raoult D (2004) Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17(2):413–433

    Article  PubMed Central  PubMed  Google Scholar 

  • Jung S, Matin A, Kim KS, Khan NA (2007). The capsule plays an important role in Escherichia coli K1 interactions with Acanthamoeba. Int J Parasitol 37:417–423

  • Khan NA (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30(4):564–595

    Article  PubMed  Google Scholar 

  • Khan NA (2009) Acanthamoeba: biology and pathogenesis. Caister Academic Press, Linton, Cambs, UK, 290pp. ISBN: 978-1-904455-43-1

  • La Scola B, Mezi L, Weiller PJ, Raoult D (2001) Isolation of Legionella anisa using an amoebic coculture procedure. J Clin Microbiol 39(1):365–366

    Article  PubMed Central  PubMed  Google Scholar 

  • La Scola B, Boyadjiev I, Greub G, Khamis A, Martin C, Raoult D (2003) Amoeba-resisting bacteria and ventilator-associated pneumonia. Emerg Infect Dis 9(7):815–821

    PubMed Central  PubMed  Google Scholar 

  • Laskowski-Arce MA, Orth K (2008) Acanthamoeba castellanii promotes the survival of Vibrio parahaemolyticus. Appl Environ Microbiol 74:7183–7188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee X, Reimmann C, Greub G, Sufrin J, Croxatto A (2012) The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii. Microbes Infect 14(3):268–272

    Article  CAS  PubMed  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 2:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Marciano-Cabral F, Cabral G (2003) Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev 16:273–307

    Article  PubMed Central  PubMed  Google Scholar 

  • Marolda CL, Hauröder B, John MA, Michel R, Valvano MA (1999) Intracellular survival and saprophytic growth of isolates from the Burkholderiacepacia complex in free-living amoebae. Microbiol 145:1509–1517

    Article  CAS  Google Scholar 

  • Michel R, Burghardt H, Bergmann H (1995) Acanthamoeba, naturally intracellularly infected with Pseudomonas aeruginosa, after their isolation from a microbiologically contaminated drinking water system in a hospital. Zentralbl Hyg Umweltmed 196(6):532–544

    CAS  PubMed  Google Scholar 

  • Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ott L, McKenzie A, Baltazar MT, Britting S, Bischof A, Burkovski A, Hoskisson PA (2012) Evaluation of invertebrate infection models for pathogenic Corynebacteria. FEMS Immunol Med Microbiol 65(3):413–421

    Article  CAS  PubMed  Google Scholar 

  • Ovrutsky AR, Chan ED, Kartalija M, Bai X, Jackson M, Gibbs S, Falkinham JO 3rd, Iseman MD, Reynolds PR, McDonnell G, Thomas V (2013) Cooccurrence of free-living amoebae and nontuberculous Mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol 79(10):3185–3192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paszko-Kolva C, Yamamoto H, Shahamat M, Sawyer TK, Morris G, Colwell RR (1991) Isolation of amoebae and Pseudomonas and Legionella spp. from eyewash stations. Appl Environ Microbiol 57(1):163–167

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vect 5:6

    Article  Google Scholar 

  • Siddiqui R, Sagheer M, Khan NA (2013) Prevalence of Acanthamoeba and superbugs in a clinical setting: coincidence or hyperparasitism. Parasitol Res 112:1349–1351

    Article  PubMed  Google Scholar 

  • Sissons J, Kim KS, Stins M, Jayasekera S, Alsam S, Khan NA (2005) Acanthamoeba castellanii induces host cell death via a phosphatidylinositol 3-kinase-dependent mechanism. Infect Immun 73:2704–2708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stins MF, Gilles F, Kim KS (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76:81–90

    Article  CAS  PubMed  Google Scholar 

  • Visvesvara GS, Moura H, Schuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol 50:1–26

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ahearn DG (1997) Effect of bacteria on survival and growth of Acanthamoeba castellanii. Curr Microbiol 34:212–215

    Article  CAS  PubMed  Google Scholar 

  • Yousuf FA, Siddiqui R, Khan NA (2013) Acanthamoeba castellanii is a potential environmental host for Enterobacter aerogenes and Aeromonas hydrophila. Parasit Vect 6:169

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the kind support provided by The Aga Khan University, Pakistan.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Ahmed Khan.

Additional information

Naveed Khan holds a BSc, MSc, PhD., Aga Khan University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, R., Lakhundi, S. & Khan, N.A. Interactions of Pseudomonas aeruginosa and Corynebacterium spp. with non-phagocytic brain microvascular endothelial cells and phagocytic Acanthamoeba castellanii . Parasitol Res 114, 2349–2356 (2015). https://doi.org/10.1007/s00436-015-4432-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4432-0

Keywords

Navigation