Skip to main content
Log in

The hamster (Mesocricetus auratus) as an experimental model of toxocariasis: histopathological, immunohistochemical, and immunoelectron microscopic findings

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Toxocariasis is a globally distributed parasitic infection caused by the larval stage of Toxocara spp. The typical natural hosts of the parasite are dogs and cats, but humans can be infected by the larval stage of the parasite after ingesting embryonated eggs in soil or from contaminated hands or fomites. The migrating larvae are not adapted to complete their life cycle within accidental or paratenic hosts like humans and laboratory animals, respectively, but they are capable of invading viscera or other tissues where they may survive and induce disease. In order to characterize hamsters (Mesocricetus auratus) as a model for Toxocara canis infection, histopathological and immunohistochemistry procedures were used to detect pathological lesions and the distribution of toxocaral antigens in the liver, lungs, and kidneys of experimentally infected animals. We also attempted to characterize the immunological parameters of the inflammatory response and correlate them with the histopathological findings. In the kidney, a correlation between glomerular changes and antigen deposits was evaluated using immunoelectron microscopy. The hamster is an adequate model of experimental toxocariasis for short-term investigations and has a good immunological and pathological response to the infection. Lung and liver manifestations of toxocariasis in hamsters approximated those in humans and other experimental animal models. A mixed Th2 immunological response to T. canis infection was predominant. The hamster model displayed a progressive rise of anti-toxocaral antibodies with the formation of immune complexes. Circulating antigens, immunoglobulin, and complement deposits were detected in the kidney without the development of a definite immune complex nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguila C, Cuéllar C, Fenoy S, Guillén JL (1987) Comparative study of assays detecting circulating immune complexes and specific antibodies in patients infected with Toxocara canis. J Helminthol 61:196–202

    Article  PubMed  CAS  Google Scholar 

  • Akao N, Ohta N (2007) Toxocariasis in Japan. Parasitol Int 56:87–93

    Article  PubMed  Google Scholar 

  • Beaver PC, SnyderH CG, Dent J, Laffery J (1952) Chronic eosinophilia due to visceral larva migrans: report of three cases. Pediatrics 9:7–19

    PubMed  CAS  Google Scholar 

  • Bilate AMB, Salemi VM, Ramires FJ, de Brito T, Russo M, Fonseca SG, Faé KC, Martins DG, Silva AM, Mady C, Kalil J, Cunha-Neto E (2007) TNF aggravates experimental chronic Chagas disease cardiomyopathy. Microbes Infect 9:1104–1113

    Article  PubMed  CAS  Google Scholar 

  • Bilate AM, Teixeira PC, Ribeiro SP, de Brito T, Silva AM, Russo M, Kalil J, Cunha-Neto E (2008) Distinct outcomes of Trypanosoma cruzi infection in hamsters are related to myocardial parasitism, cytokine/chemokine gene expression, and protein expression profile. J Infect Dis 198:614–623

    Article  PubMed  CAS  Google Scholar 

  • Bowman DD, Mika-Grieve M, Grieve RB (1987a) Circulating excretory-secretory antigen levels and specific antibody responses in mice infected with Toxocara canis. Am J Trop Med Hyg 36:75–82

    PubMed  CAS  Google Scholar 

  • Bowman DD, Mika-Grieve M, Grieve RB (1987b) Toxocara canis: monoclonal antibodies to larval excretory antigens that bind with genus and species specificity to the surface of infective larvae. Exp Parasitol 64:458–465

    Article  PubMed  CAS  Google Scholar 

  • Casarosa L, Papini R, Mancianti F, Abramo F, Poli A (1992) Renal involvement in mice experimentally infected with Toxocara canis embryonated eggs. Vet Parasitol 42:265–272

    Article  PubMed  CAS  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  PubMed  CAS  Google Scholar 

  • Cuéllar C, Fenoy S, Del Àguila C, Guillén JL (2001) Isotype specific immune responses in murine experimental toxocariasis. Mem Inst Oswaldo Cruz 96:549–553

    Article  PubMed  Google Scholar 

  • De Brito T, Chieffi PP, Peres BA, Santos RT, Gayotto LCC, Vianna MR, Porta G, Alves VAF (1994) Immunohistochemical detection of toxocaral antigens in human liver biopsies. Int J Surg Pathol 2:117–124

    Article  Google Scholar 

  • De Brito T, Carneiro RWC, Nakhle MC, Lima DMC, Abrantes-Lemos CP, Sandoval M, Silva AMG (1998) Localization by immunoelectron microscopy of Schistosoma mansoni antigens in the glomerulus of the hamster (Mesocricetus auratus) kidney. Exp Nephrol 6:368–376

    Article  PubMed  Google Scholar 

  • De Brito T, Nussenzveig I, Carneiro CRW, Nakhle MC, Carvalho S, Silva AMG, Sandoval M, Saldanha LB (1999) Glomerular detection of schistosomal antigen by immunoelectron microscopy in human Mansonian schistosomiasis. Int J Surg Pathol 7:217–225

    Article  Google Scholar 

  • De Savigny DH (1975) In vitro maintenance of Toxocara canis larvae and a simple method for production of Toxocara ES antigen for use in serodiagnostic tests for visceral larva migrans. J Parasitol 61:81–782

    Article  Google Scholar 

  • De Savigny DH, Voller A, Woodruff AW (1979) Toxocariasis: serological diagnosis by enzyme immunoassay. J Clin Pathol 32:284–288

    Article  PubMed Central  PubMed  Google Scholar 

  • de St Groth F, Scheidegger D (1980) Production of monoclonal antibody strategy and tactics. J Immunol Methods 35:1–21

    Article  Google Scholar 

  • Despommier D (2003) Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin Microbiol Rev 16:265–272

    Article  PubMed Central  PubMed  Google Scholar 

  • Elefant GR, Shimizu SH, Sanchez MCA, Jacob CMA, Ferreira AW (2006) A serological follow-up of toxocariasis patients after chemotherapy based on the detection of IgG, IgA and IgE antibodies by enzyme-linked immunosorbent assay. J Clin Lab Anal 20:164–172

    Article  PubMed  CAS  Google Scholar 

  • Fahrion AS, Staebler S, Deplazes P (2008) Patent Toxocara canis infections in previously exposed and in helminth-free dogs after infection with low numbers of embryonated eggs. Vet Parasitol 152:108–115

    Article  PubMed  CAS  Google Scholar 

  • Fan C-K, Lin Y-H, Du W-Y, Su K-E (2003) Infectivity and pathogenicity of 14-month-cultured embryonated eggs of Toxocara canis in mice. Vet Parasitol 113:145–155

    Article  PubMed  Google Scholar 

  • Fan C-K, Lin Y-H, Hung C-C, Chang S-F, Su K-E (2004) Enhanced inducible nitric oxide synthase expression and nitrotyrosine accumulation in experimental granulomatous hepatitis caused by Toxocara canis in mice. Parasite Immunol 26:273–281

    Article  PubMed  CAS  Google Scholar 

  • Fan C-K, Liao C-W, Cheng Y-C (2013) Factors affecting disease manifestation of toxocarosis in humans: genetics and environment. Vet Parasitol 193:342–352

    Article  PubMed  CAS  Google Scholar 

  • Fillaux J, Magnaval JF (2013) Laboratory diagnosis of human toxocariasis. Vet Parasitol 193:327–336

    Article  PubMed  CAS  Google Scholar 

  • Glickman LT, Schantz PM (1981) Epidemiology and pathogenesis of zoonotic toxocariasis. Epidemiol Rev 3:230–250

    PubMed  CAS  Google Scholar 

  • Glickman LT, Summers BA (1983) Experimental Toxocara canis infection in cynomolgus macaques (Macaca fascicularis). Am J Vet Res 44(12):2347–2354

    PubMed  CAS  Google Scholar 

  • Hassan AT, El-Manawaty NHA (1994) Experimental murine toxocariasis histopathological study of chronic renal infection, transplacental transmission and ultrastructural study of egg shell. J Egypt Soc Parasitol 24:333–340

    PubMed  CAS  Google Scholar 

  • Kanamura HY, Hoshino-Shimizu S, Silva LC (1981) Solubilization of antigen S. mansoni adult worms for the passive hemagglutination test. Rev Inst Med Trop Sao Paulo 23:92–95

    PubMed  CAS  Google Scholar 

  • Kazacos KR (1997) Visceral, ocular and neural larva migrans. In Pathology of Infectious Diseases - Daniel H Connor, Francis W. Chandler, David A. Schwartz, Herbert J. Manz, Ernst E. Lack, p.1459-1473, Appleton&Lange Ed

  • Klein JRH, Tazelaar HD, Leslie KO, Colby TV (2010) One hundred consecutive granulomas in a pulmonary pathology consultation practice. Am J Surg Pathol 34:1456–1464

    Article  Google Scholar 

  • Laurenti MD, Corbett CE, Sotto MN, Sinhorini IL, Goto H (1996) The role of complement in the acute inflammatory process in the skin and in host–parasite interaction in hamsters inoculated with Leishmania (Leishmania) chagasi. Int J Exp Pathol 77:15–24

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Laurenti MD, Orn A, Sinhorini IL, Corbett CE (2004) The role of complement in the early phase of Leishmania (Leishmania) amazonensis infection in BALB/c mice. Braz J Med Biol Res 37:427–434

    Article  PubMed  CAS  Google Scholar 

  • Maizels RM (2013) Toxocara canis: molecular basis of immune recognition and evasion. Vet Parasitol 193:365–374. doi:10.1016/j.vetpar.2012.12.032

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3:733–744. doi:10.1038/nri1183

    Article  PubMed  CAS  Google Scholar 

  • Matsumura K, Kazuta Y, Endo R, Tanaka K (1984) Detection of circulating antigens in dogs by sandwich enzyme-immunoassay. Immunol 51:609–613

    CAS  Google Scholar 

  • Musso C, Castelo JS, Tsanaclis A, Pereira FEL (2007) Prevalence of Toxocara-induced liver granulomas, detected by immunohistochemistry, in a series of autopsies at a children’s reference hospital in Vitoria, ES, Brazil. Virchows Arch 450:411–417

    Article  PubMed  Google Scholar 

  • Nada SM, Abazza BE, Mahmoud LA, Habeeb YS, Hussein HF, Amer OT (1996) Toxocariasis as a cause of renal disease in children in Sharkia Governorate, Egypt. J Egypt Soc Parasitol 26(3):709–717

    PubMed  CAS  Google Scholar 

  • Nagy D, Bede O, Danka J, Szénási Z, Sipka S (2012) Analysis of serum cytokine levels in children with chronic cough associated with Toxocara canis infection. Parasite Immunol 34:581–588

    Article  PubMed  CAS  Google Scholar 

  • Nussenzveig I, Brito T, Carneiro CRW, Silva AMG (2002) Human Schistosoma mansoni associated glomerulopathy in Brazil. Nephrol Dial Transplant 17:4–7

    Article  PubMed  Google Scholar 

  • Ollero MD, Fenoy S, Cuéllar C, Guillén JL, Aguila C (2008) Experimental toxocarosis in BALB/c mice: effect of the inoculation dose on brain and eye involvement. Acta Trop 105:124–130

    Article  PubMed  CAS  Google Scholar 

  • Othman AA, El-Shourbagy SH, Soliman RH (2011) Kinetics of Foxp-3-expressing regulatory cells in experimental T. canis infection. Exp Parasitol 127:454–459

    Article  PubMed  CAS  Google Scholar 

  • Pinelli E, Brandes S, Dormans J, Fonville M, Hamilton CM, der Giessen J (2007) Toxocara canis: effect of inoculum size on pulmonary pathology and cytokine expression in BALB/c mice. Exp Parasitol 115(1):76–82

    Article  PubMed  CAS  Google Scholar 

  • Robertson BD, Burkot TR, Gillespie SH, Kennedy MW, WanbaiF MRM (1988) Detection of circulating parasite antigen and specific antibody in Toxocara canis infections. Clin Exp Immunol 74:236–241

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rubinsky-Elefant G, Hirata CE, Yamamoto JH, Ferreira MU (2010) Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Ann Trop Med Parasitol 104(1):3–23

    Article  PubMed  CAS  Google Scholar 

  • Sartori A, Oliveira AV, Roque-Barreira C, Rossi MA, Campos-Neto A (1987) Immune complex glomerulonephritis in experimental kala–azar. Parasite Immunol 9:93–103

    Article  PubMed  CAS  Google Scholar 

  • Sethi S, Fervenza FC (2012) Membranoproliferative glomerulonephritis—a new look at an old entity. N Engl J Med 366:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Shetty AK, Aviles DH (1999) Nephrotic syndrome associated with Toxocara canis infection. Ann Trop Paediatr 19:297–300

    Article  PubMed  CAS  Google Scholar 

  • Torina A, Caracappa S, Barera A, Dieli F, Sireci G, Genchi C, Deplazes P, Salerno A (2005) Toxocara canis infection induces antigen-specific IL-10 and IFNγ production in pregnant dogs and their puppies. Vet Immunol Immunopathol 108(1–2):247–251

    Article  PubMed  CAS  Google Scholar 

  • van Velthuysen MLF, Florquin S (2000) Glomerulopathy associated with parasitic infections. Clin Microbiol Rev 13:55–66

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilder HC (1950) Nematode endophthalmitis. Trans Am Acad Ophthalmol Otolaryngol 55:99–104

    PubMed  CAS  Google Scholar 

  • Zotos PG, Psimenou E, Roussou M, Kontogiannis S, Panoutsopoulus A, Dimopoulus AM (2006) Nephrotic syndrome as a manifestation of Toxocara canis infection. Nephrol Dial Transplant 21(9):2675–2676

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Carmen Arroyo Sanchez for helping in the statistical analysis. English revision was done by BioMed Proofreading LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Gonçalves da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.M.G., Chieffi, P.P., da Silva, W.L.F. et al. The hamster (Mesocricetus auratus) as an experimental model of toxocariasis: histopathological, immunohistochemical, and immunoelectron microscopic findings. Parasitol Res 114, 809–821 (2015). https://doi.org/10.1007/s00436-014-4246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4246-5

Keywords

Navigation