Skip to main content

Advertisement

Log in

The larvicidal activity of Agave sisalana against L4 larvae of Aedes aegypti is mediated by internal necrosis and inhibition of nitric oxide production

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Dengue is a viral disease that affects about 50 million people per year around the world. The aim of this study was to investigate the larvicidal activity of Agave sisalana crude extract in order to develop a new insecticide against Aedes aegypti. In larvicidal activity assays, fourth-stage Ae. aegypti larvae were exposed to different concentrations of A. sisalana crude extract for 3, 6, 12, and 24 h for determining the LC50. Next, we explored its cytotoxic activity by flow cytometry. Furthermore, histological alterations were confirmed by histopathological analysis, and the nitric oxide (NO) production by hemocytes was checked after different periods of exposure to A. sisalana crude extract. The LC50 was 4.5 ± 0.07 mg/mL. In addition, flow cytometry revealed an increase of cellular necrosis (21 and 16.5 % after 12 and 24 h, respectively) in larvae that were exposed to A. sisalana crude extract. The histological analysis revealed cell lysis and destruction of the peritrophic membrane. Furthermore, there was a reduction in the concentration of NO in the hemolymph from larvae exposed to A. sisalana crude extract after 3, 6, and 24 h (5.3 ± 4.3 vs. 22.7 ± 5.2 μM, 4.3 ± 5.5 vs. 25.4 ± 6.6 μM, and 6 ± 1.7 vs. 37.1 ± 7.8 μM, respectively). Our findings show that A. sisalana crude extract constitutes an effective larvicidal agent against Ae. aegypti larvae due to its necrotizing activity in hemocytes and inhibition of the NO production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barbosa PB, de Oliveira JM, Chagas JM, Rabelo LM, de Medeiros GF, Giodani RB, da Silva EA, Uchôa AF, de Fátima de Freire MXM (2014) Evaluation of seed extracts from plants found in the Caatinga biome for the control of Aedes aegypti. Parasitol Res 113(10):3565–3580

    Article  PubMed  Google Scholar 

  • Bolognese R (2002) Síntese, degradação e funções da membrana peritrófica dos insetos. PhD thesis. University of São Paulo.

  • Botura MB, Silva GD, Lima HG, Oliveira JV, Souza TS, Santos JD, Branco A, Moreira EL, Almeida MA, Batatinha MJ (2010) In vivo anthelmintic activity of an aqueous extract from sisal waste (Agave sisalana Perr.) against gastrointestinal nematodes in goats. Vet Parasitol 177:104–110

    Article  PubMed  Google Scholar 

  • Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA (2007) AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 6(21):2612–2619

    Article  CAS  PubMed  Google Scholar 

  • Bras M, Queenan B, Susin SA (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Mosc) 70(2):231–239

    Article  CAS  Google Scholar 

  • Castejon FV: Taninos e Saponinas. Seminário. http://portais.ufg.br/uploads/67/original_semi2011_Fernanda_Castejon_1c.pdf. Accessed on 20 July 2014.

  • Consoli RAGB, Mendes NM, Pereira JP, Santos BS, Lamounier MLA (1988) Influência de diversos derivados de vegetais na sobrevida das larvas de Aedes fluviatilis (Lutz) (Diptera: Culicidae) em laboratório. Mem Inst Oswaldo Cruz 83:87–93

    Article  CAS  PubMed  Google Scholar 

  • Daharam Shaktu NS, Menon PKM (1983) Larvicidal property of three species of genus Agave (Fam: Amaryllidaceae). J Commun Disord 15:135–137

    Google Scholar 

  • Duarte RA (2010) Sinalização celular para apoptose em linhagem celular de adenocarcinoma (MCF-7) e carcinoma ductal invasivo de mama (ZR 7531) tratadas com alcalóides isolados de Pterogyne nitens. PhD tesis. São Paulo State University.

  • Dunder RJ, Quaglio AEV, Maciel RP, Luiz-Ferreira A, Almeida ACA, Takayama C, de Faria FM, Souza-Brito ARM (2010) Anti-inflammatory and analgesic potential of hydrolyzed extract of Agave sisalana Perrine ex Engelm., Asparagaceae. Rev Bras Farmacogn 20:376–381

    Article  Google Scholar 

  • Faraldo AC, Sá-Nunes A, Del Bel EA, Faccioli LH, Lello E (2005) Nitric oxide production in blowfly hemolymph after yeast inoculation. Nitric Oxide Biol Chem 13:240–246

    Article  CAS  Google Scholar 

  • Foley E, O’Farrel PH (2013) Nitric oxide contributes to induction of innate immune responses to gram-negative bacteria in Drosophila. Genes Dev 17:115–125

    Article  Google Scholar 

  • Foster I (2008) Cancer: a cell cycle defect. Radiography 14:144–149

    Article  Google Scholar 

  • Gourdon I, Guérin MC, Torreiles J, Roch P (2001) Nitric oxide generation by hemocytes of the mussel Mytilus galloprovincialis. Nitric Oxide 5(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Green LC, Ruiz de Luzuriaga K, Wagner DA, Rand W, Istfan N, Young VR, Tannenbaum SR (1981) Nitrate biosynthesis in man. Proc Natl Acad Sci 78:7764–7768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horta MAP, Castro FIC, Rosa CS, Daniel MC, Melo AL (2011) Resistance of Aedes aegypti (L.) (Diptera: Culicidae) to temephos in Brazil: a revision and new data for Minas Gerais state. BioEssay 6(7):1–6

    Google Scholar 

  • Maheswaran R, Ignacimuthu S (2014) Effect of polygonum hydropiper L. against dengue vector mosquito Aedes albopictus L. Parasitol Res 113(9):3143–3150

    Article  PubMed  Google Scholar 

  • Nappi AJ, Ottaviani E (2000) Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays 22:469–480

    Article  CAS  PubMed  Google Scholar 

  • Nunes-Moreira JA, Macedo-Beltrão NE, Ferreira da Silva OR, Nunes-Moreira JA, Macedo-Beltrão NE, Ferreira da Silva OR (1999) O agronegócio do sisal no Brasil. Embrapa Produção de Informação, Campina Grande, pp 25–34

    Google Scholar 

  • Oliveira MSC, de Morais SM, Magalhaes DV, Batista WP, Vieira IGP, Craveiro AA, Manezes JESA, Carvalho AFU, Lima GPG (2011) Antioxidant, larvicidal and antiacetylcholinesterase activities of cashew nut shell liquid constituents. Acta Trop 117(3):165–170

    Article  CAS  PubMed  Google Scholar 

  • Pechan T, Cohen A, Willians WP, Luthe DS (2002) Insect feeding mobilizes a unique plant defense protease that disrupts the peritrophic matrix of caterpillars. Proc Natl Acad Sci 99(13):319–323

    Google Scholar 

  • Peters W (1992) Peritrophic membranes. Springer, Berlin

    Book  Google Scholar 

  • Pizarro APB, Filho AMOF, Parente JP, Melo MTV, Santos CE, Lima PR (1999) Utilization of the waste of sisal industry in the control of mosquito larvae. J Braz Soc Med 32(1):23–29

    Article  CAS  Google Scholar 

  • Ribeiro LMS (2010) Respostas imunológicas e mecânicas em população suscetível e resistente Plutella xylostella (l.) (Lepidoptera: plutellidae) frente a formulações comerciais à base de Bacillus thuringiensis berliner. Master dissertation. Federal University of Pernambuco.

  • Santos JDG, Branco A, Silva AF, Pinheiro CSR, Neto AG, Uetanabaro APT, Queiroz SROD, Osuna JTA (2009) Antimicrobial activity of Agave sisalana. Afr J Biotechnol 8:6181–6184

    Google Scholar 

  • Schenkel EP, Gosmann G, Athayde ML (2001) Saponinas. In Farmacognosia: da planta ao medicamento, 3rd edn. UFGRS, Porto Alegre, pp 597–619

    Google Scholar 

  • Silva C, Cunha R, Felipe R, Felipe R (2009) Desenvolvimento de tecidos de sisal para utilização em compósitos poliméricos. Holos 25(4):12–19

    Google Scholar 

  • Silva-Alves CBD, Anjos JV, Cavalcante NNM, Santos KNG, Navarro MAFD, Srivastava RM (2013) Larvicidal isoxazoles: synthesis and their effective susceptibility towards Aedes aegypti larvae. Bioorg Med Chem 21:940–947

    Article  PubMed  Google Scholar 

  • Ventura ALM, Abreu PA, Freitas RCC, Sathler PC, Loureiro N, Castro HC (2010) Sistema colinérgico: revisitando receptores, regulação e a relação com a doença de Alzheimer, esquizofrenia, epilepsia e tabagismo. Rev Psiquiatr Clín 37(2):66–72

    Article  Google Scholar 

  • Vera SS, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F, Stashenko EE, Duque Luna JE (2014) Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res 113(7):2647–2654

    Article  PubMed  Google Scholar 

  • World Health Organization (1970) Insecticide resistance and vector control. WHO Technical Reports Series. WHO, Geneva

    Google Scholar 

  • World Health Organization (2014) Dengue and severe dengue. http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed on 23 June 2014.

  • Zullo MAT, Azzini A, Salgado ALB, Ciaramello D (1989) Sapogeninas esteroídicas em sisal. Bragantia 48(1):21–25

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mrs. Laura Ney and collaborators for the technical assistance. This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) in Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiola C. Nunes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, F.C., Leite, J.A., Oliveira, L.H.G. et al. The larvicidal activity of Agave sisalana against L4 larvae of Aedes aegypti is mediated by internal necrosis and inhibition of nitric oxide production. Parasitol Res 114, 543–549 (2015). https://doi.org/10.1007/s00436-014-4216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4216-y

Navigation