Skip to main content

Advertisement

Log in

RCB20, an experimental benzimidazole derivative, affects tubulin expression and induces gross anatomical changes in Taenia crassiceps cysticerci

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Helminth β-tubulins are the targets of benzimidazole (BZM) carbamate compounds. The specificity of the interactions between such compounds and their in vivo targets depends on the presence of specific amino acid residues in the target molecules. To discover new and effective anthelmintic drugs, we used a medicinal chemistry approach to synthesize a series of BZM derivatives that exploited the BZM moiety as a template. We have previously found that one compound, 2-(trifluoromethyl)-1H-benzimidazole (RCB20), has better in vitro and in vivo activity than albendazole sulfoxide (ABZSO). In the present study, the effect of RCB20 and ABZSO treatment on expression of Taenia crassiceps cysticerci cytoskeletal proteins such as actin, myosin II, and tubulin isoforms was examined. The effects of RCB20 and ABZSO after 11 days treatment of the parasites was evaluated by light, confocal, and electron microscopy, and by immunochemistry and immunohistochemistry. The RCB20-induced effects were more rapid than the ABZSO-induced effects on the parasites. In the RCB20-treated parasites, we observed gross-structural damage at the whole parasite level, particularly in the inner tissues and flame cells. Changes in the expression patterns of the cytoskeletal proteins, as assessed by immunohistochemistry and immunoblotting, revealed that the most important drug-induced effect on the parasites was a reduction in the expression level of tyrosinated α-tubulins. Our research findings suggest that RCB20 treatment affected posttranslational modification of parasite α-tubulin molecules, which involved removal of the α-tubulin carboxy-terminal tyrosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABZSO:

Albendazole sulfoxide

BZM:

Benzimidazole

RCB20:

2-(trifluoromethyl)-1H-benzimidazole derivative

CTT:

Carboxy-terminal tyrosine

DAPI:

Diamino-2-phenylindole

DMSO:

Dimethyl sulfoxide

F-actin:

Filamentous actin

G-actin:

Globular actin

FC:

Flame cells

HCM:

Heavy chain myosin

LSCM:

Laser scanning confocal microscopy

MT:

Microtubule

MAb:

Monoclonal antibody

RT:

Room temperature

PBS:

Phosphate-buffered saline solution

SEM:

Scanning electron microscopy

PTM:

Posttranslational modifications

References

  • Alvarez LI, Mottier ML, Lanusse CE (2007) Drug transfer into target helminth parasites. Trends Parasitol 23:97–104

    Article  PubMed  CAS  Google Scholar 

  • Ambrosio J, Landa A, Merchant MT, Laclette JP (1994) Protein uptake by cysticerci of Taenia crassiceps. Arch Med Res 25:325–330

    PubMed  CAS  Google Scholar 

  • Ambrosio J, Cruz-Rivera M, Allan J, Morán E, Ersfeld K, Flisser A (1997) Identification and partial characterization of a myosin-like protein from cysticerci and adults of Taenia solium using a monoclonal antibody. Parasitology 114:545–553

    PubMed  CAS  Google Scholar 

  • Ambrosio JR, Reynoso-Ducoing O, Hernández-Sanchez H, Correa-Piña D, González-Malerva L, Cruz-Rivera M, Flisser A (2003) Actin expression in Taenia solium cysticerci (Cestoda): tisular distribution and detection of isoforms. Cell Biol Int 27:727–733

    Article  PubMed  CAS  Google Scholar 

  • Ambrosio JR (2007) Cytoskeletal proteins of parasites as therapeutic agents. In: Terrazas LI (ed) Advances in the immunobiology of parasitic diseases. Research Signpost, Kerala, pp 73–90. ISBN 81-308-0166-3

    Google Scholar 

  • Bantscheff M, Drewes G (2012) Chemoproteomic approaches to drug target identification and drug profiling. Bioorg Med Chem 20:1973–1978

    Article  PubMed  CAS  Google Scholar 

  • Brusca RC, Brusca GJ (2003) Invertebrates, 2nd edn. McGraw-Hill-Interamericana, Madrid

    Google Scholar 

  • Bryan J, Wilson L (1971) Are cytoplasmic microtubules heteropolymers? Proc Natl Acad Sci U SA 68:1762–1766

    Article  CAS  Google Scholar 

  • Chambers E, Ryan LA, Hoey EM, Trudgett A, McFerran NV, Fairweather I, Timson DJ (2010) Liver fluke β-tubulin isotype 2 binds albendazole and is thus a probable target of this drug. Parasitol Res 107:1257–1264

    Article  PubMed  Google Scholar 

  • Dayan AD (2003) Albendazole, mebendazole, and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Trop 86:141–159

    Article  PubMed  CAS  Google Scholar 

  • de Forges H, Bouissou A, Perez F (2012) Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol 44:266–274

    Google Scholar 

  • Freedman H, Luchko T, Luduena RF, Tuszynski JA (2011) Molecular dynamics modeling of tubulin C-terminal tail interactions with the microtubule surface. Proteins 79:2968–2982

    Article  PubMed  CAS  Google Scholar 

  • Garnham C, Roll-Mecak A (2012) The chemical complexity of cellular microtubules: Tubulin post-translational modification enzymes and their roles in tuning microtubule functions. Cytoskeleton 69:442–463

    Google Scholar 

  • Hammond J, Cai D, Verhey KJ (2008) Tubulin modifications and their cellular functions. Curr Opin Cell Biol 20:71–76

    Article  PubMed  CAS  Google Scholar 

  • Harris G, Schaefer KL (2009) The microtubule-targeting agent T0070907 induces proteasomal degradation of tubulin. Biochem Biophys Res Commun 388:345–349

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Campos A, Ibarra-Velarde F, Vera-Montenegro Y, Rivera-Fernández N, Castillo R (2002) Synthesis and fasciolicidal activity of 5-chloro-2-methylthio-6-(1-naphthyloxy)-1H-benzimidazole. Chem Pharm Bull 50:649–652

    Article  PubMed  Google Scholar 

  • Hernández-Luis F, Hernández-Campos A, Castillo R, Navarrete-Vázquez G, Soria-Arteche O, Hernández-Hernández M, Yépez-Mulia L (2010) Synthesis and biological activity of 2-(trifluoromethyl)-1H-benzimidazole derivatives against some protozoa and Trichinella spiralis. Eur J Med Chem 45:3135–3141

    Article  PubMed  Google Scholar 

  • Janke C, Bulinsky JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 12:773–786

    Article  PubMed  CAS  Google Scholar 

  • Kumar D, McGeown JG, Reynoso-Ducoing O, Ambrosio JR, Fairweather I (2003) Observations on the musculature and isolated muscle fibres of the liver fluke, Fasciola hepatica. Parasitology 127:457–473

    Article  PubMed  CAS  Google Scholar 

  • Lacey E (1988) The role of the cytoskeletal protein, tubulin, in the mode of action and mechanism of drug resistance to benzimidazoles. Int J Parasitol 18:885–936

    Article  PubMed  CAS  Google Scholar 

  • Lacey E (1990) Mode of action of benzimidazoles. Parasitol Today 6:112–115

    Article  PubMed  CAS  Google Scholar 

  • Libusová L, Dráber P (2006) Multiple tubulin forms in ciliated protozoan Tetrahymena and Paramecium species. Protoplasma 227:65–76

    Article  PubMed  Google Scholar 

  • Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Ploegh H, Matsudaria P (2008) Molecular cell biology, 6th edn. WH Freeman, New York, pp 796–800

    Google Scholar 

  • Luchko T, Huzil JT, Stepanova M, Tuszynski J (2008) Conformational analysis of the carboxy-terminal tails of human beta-tubulin isotypes. Biophys J 94:1971–1982

    Article  PubMed  CAS  Google Scholar 

  • MacDonald LM (2003) Characterization of the benzimidazole-binding site on the cytoskeletal protein tubulin. PhD thesis. Murdoch University, Perth, Western Australia

    Google Scholar 

  • MacRae TH (1997) Tubulin post-translational modifications. Enzymes and their mechanisms of action. Eur J Biochem 244:265–278

    Article  PubMed  CAS  Google Scholar 

  • Martin RJ (1997) Modes of action of anthelmintic drugs. Vet J 154:11–134

    Article  PubMed  CAS  Google Scholar 

  • Márquez-Navarro A, Nogueda-Torres B, Hernández-Campos A, Soria-Arteche O, Castillo R, Rodríguez-Morales S, Yépez-Mulia L, Hernández-Luis F (2009) Anthelmintic activity of benzimidazole derivatives against Toxocara canis second-stage larvae and Hymenolepis nana adults. Acta Trop 109:232–235

    Article  PubMed  Google Scholar 

  • McConville M, Brennan GP, Flanagan A, Edgar HWJ, McCoy M, Castillo R, Hernández-Campos A, Fairweather I (2008) Surface and internal tegumental changes in juvenile Fasciola hepatica following treatment in vivo with the experimental fasciolicide, compound alpha. Vet Parasitol 153:52–64

    Article  PubMed  CAS  Google Scholar 

  • McConville M, Brennan GP, Flanagan A, Edgar HWJ, Hanna REB, McCoy M, Gordon AW, Castillo R, Hernández-Campos A, Fairweather I (2009a) An evaluation of the efficacy of compound alpha and triclabendazole against two isolates of Fasciola hepatica. Vet Parasitol 162:75–88

    Article  PubMed  CAS  Google Scholar 

  • McConville M, Brennan GP, Flanagan A, Hanna REB, Edgar HWJ, Castillo R, Hernández-Campos A, Fairweather I (2009b) Surface changes in adult Fasciola hepatica following treatment in vivo with experimental fasciolicide, compound alpha. Parasitol Res 105:757–767

    Article  PubMed  CAS  Google Scholar 

  • Moore J (2006) An introduction to the invertebrates, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Mottier ML, Alvarez LI, Pis MA, Lanusse CE (2003) Transtegumental diffusion of benzimidazoles anthelmintics into Moniezia benedeni: correlation with their octanol-water partition coefficients. Exp Parasitol 103:1–7

    Article  PubMed  CAS  Google Scholar 

  • Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302

    Article  PubMed  CAS  Google Scholar 

  • Pisano C, Battistoni A, Antoccia A, Degrassi F, Tanzarella C (2000) Changes in microtubule organization after exposure to a benzimidazole derivative in Chinese hamster cells. Mutagenesis 15:507–515

    Article  PubMed  CAS  Google Scholar 

  • Rivera N, Ibarra F, Zepeda A, Fortoul T, Cantó G, Hernández A, Castillo R (2005) The effect of the 5-chloro-2-methylthio-6-(1-naphtyloxy)-1H-benzimidazole on the tegument of immature Fasciola hepatica in their natural host. Parasitol Res 95:379–382

    Article  PubMed  Google Scholar 

  • Robinson MW, McFerran N, Trudgett A, Hoey L, Fairweather I (2004) A possible model of benzimidazole binding to β-tubulin disclosed by invoking an inter-domain movement. J Mol Graph Model 23:275–284

    Article  PubMed  CAS  Google Scholar 

  • Rojas-Aguirre Y, Yépez-Mulia L, Castillo I, López-Vallejo F, Soria-Arteche O, Hernández-Campos A, Castillo R, Hernández-Luis F (2011) Studies on 6-chloro-5-(1-naphthyloxy)-2-(trifluoromethyl)-1H-benzimidazole/ 2-hydroxypropyl-β-cyclodextrin association: Characterization, molecular modeling studies, and in vivo anthelminthic activity. Bioorg Med Chem 19:789–797

    Article  PubMed  CAS  Google Scholar 

  • Schaefer KL, Takahashi H, Morales VM, Harris G, Barton S, Osawa E, Nakajima A, Saubermann LJ (2007) PPARgamma inhibitors reduce tubulin protein levels by a PPARgamma, PPARdelta and proteasome-independent mechanism, resulting in cell cycle arrest, apoptosis and reduced metastasis of colorectal carcinoma cells. Int J Cancer 120:702–713

    Article  PubMed  CAS  Google Scholar 

  • Smith JD, McManus DP (1989) The physiology and biochemistry of cestodes. Cambridge University Press, New York

    Book  Google Scholar 

  • Tuszynski JA, Carpenter EJ, Huzil JT, Malinski W, Luchko T, Luduena RF (2006) The evolution of the structure of tubulin and its potential consequences for the role and function of microtubules in cells and embryos. Int J Dev Biol 50:341–358

    Article  PubMed  CAS  Google Scholar 

  • Valverde-Islas L, Arrangoiz E, Vega E, Robert L, Villanueva R, Reynoso-Ducoing O, Willms K, Zepeda-Rodríguez A, Fortoul T, Ambrosio JR (2011) Visualization and 3D reconstruction of flame cells of Taenia solium (Cestoda). PLoS One 6:e14754

    Article  PubMed  CAS  Google Scholar 

  • Vaughan S, Dawe HR (2011) Common themes in centriole and centrosome movements. Trends Cell Biol 21:57–66

    Article  PubMed  CAS  Google Scholar 

  • Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    Article  PubMed  CAS  Google Scholar 

  • Willms K, Zurabian R (2010) Taenia crassiceps: in vivo and in vitro models. Parasitology 137:335–346

    Article  PubMed  Google Scholar 

  • Wloga D, Gaertig J (2010) Post-translational modifications of microtubules. J Cell Sci 123:3447–3455

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the following grants: IN201003, IN216107, IN201510, and IX200610 from the Dirección General de Asuntos del Personal Académico (DGAPA)-UNAM, and V43629-M 080093 from the Consejo Nacional de Ciencia y Tecnología. AMN received a postdoctoral fellowship from DGAPA-UNAM. Microscopic expertise was provided by Gabriel Ortiz from IFICE-UNAM. We also thank Laura Valverde-Islas and Carlos Ibarra for their technical help and advice during microscopic analysis of the parasites. Our thanks also go to M.L.I. Rafael Ibarra for his enthusiastic guidance on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier R. Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez-Navarro, A., Pérez-Reyes, A., Zepeda-Rodríguez, A. et al. RCB20, an experimental benzimidazole derivative, affects tubulin expression and induces gross anatomical changes in Taenia crassiceps cysticerci. Parasitol Res 112, 2215–2226 (2013). https://doi.org/10.1007/s00436-013-3379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-013-3379-2

Keywords

Navigation