Skip to main content

Advertisement

Log in

Amplified fragment length polymorphism: an adept technique for genome mapping, genetic differentiation, and intraspecific variation in protozoan parasites

  • Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

With the advent of polymerase chain reaction (PCR), genetic markers are now accessible for all organisms, including parasites. Amplified fragment length polymorphism (AFLP) is a PCR-based marker for the rapid screening of genetic diversity and intraspecific variation. It is a potent fingerprinting technique for genomic DNAs of any origin or complexity and rapidly generates a number of highly replicable markers that allow high-resolution genotyping. AFLPs are convenient and reliable in comparison to other markers like random amplified polymorphic DNA, restriction fragment length polymorphism, and simple sequence repeat in terms of time and cost efficiency, reproducibility, and resolution as it does not require template DNA sequencing. In addition, AFLP essentially probes the entire genome at random, without prior sequence knowledge. So, AFLP markers have emerged as an advance type of genetic marker with broad application in genomic mapping, population genetics, and DNA fingerprinting and are ideally suited as screening tool for molecular markers linked with biological and clinical traits. This review describes the AFLP procedure and its applications and overview in the fingerprinting of a genome, which has been currently used in parasite genome research. We outline the AFLP procedure adapted for Leishmania genome study and discuss the benefits of AFLPs for assessing genetic variation and genome mapping over other existing molecular techniques. We highlight the possible use of AFLPs as genetic markers with its broad application in parasitological research because it allows random screening of the entire genome for linkage with genetic and clinical properties of the parasite. In this review, we have taken a pragmatic approach on the study of AFLP for genome mapping and polymorphism in protozoan parasites and conclude that AFLP is a very useful tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agbo EE, Majiwa PA, Claassen HJ, Pas MFW (2002) Molecular variation of Trypanosoma brucei subspecies as revealed by AFLP fingerprinting. Parasitology 124:349–358

    Article  PubMed  CAS  Google Scholar 

  • Aggarwal K, Shenoy V, Ramadevi J, Rajkumar R, Singh L (2002) Molecular characterization of some Indian Basmati and other elite rice genotypes using fluorescent-AFLP. Theor Appl Genet 105:680–690

    Article  PubMed  CAS  Google Scholar 

  • Akkafa F, Dilmec F, Alpua Z (2008) Identification of Leishmania parasites in clinical samples obtained from cutaneous leishmaniasis patients using PCR-RFLP technique in endemic region, Sanliurfa province, in Turkey. Parasitol Res 103:583–586

    Article  PubMed  Google Scholar 

  • Archak S, Gaikwad AB, Gautam D, Rao EV, Swamy KR, Karihaloo JL (2003) Comparative assessment of DNA fingerprinting techniques (RAPD, ISSR and AFLP) for genetic analysis of cashew (Anacardium occidentale L.) accessions of India. Genome 46:362–369

    Google Scholar 

  • Becker J, Vos P, Kuiper M, Salamini F, Heun M (1995) Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249:65–73

    Article  PubMed  CAS  Google Scholar 

  • Beismann H, Barker JHA, Karp A, Speck T (1997) AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Mol Ecol 6:989–993

    Article  CAS  Google Scholar 

  • Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Beyermann B, Numberg P, Weihe A, Meixner M, Epplen JT, Bomer T (1992) Fingerprinting plant genomes with oligonucleotide probes specific for simple repetitive DNA sequences. Theor Appl Genet 83:691–694

    Article  CAS  Google Scholar 

  • Blake DP, Smith AL, Shirley MW (2003) Amplified fragment length polymorphism analyses of Eimeria spp.: an improved process for genetic studies of recombinant parasites. Parasitol Res 90(6):473–475

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Caetano-Anolles G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using very short arbitrary oligonucleotide primers. Biotechnology (NY) 9:553–557

    Article  CAS  Google Scholar 

  • Chen J, Devanand PS, Norman DJ, Henny RJ, Chao CC (2004) Genetic relationships of Aglaonema species and cultivars inferred from AFLP markers. Ann Bot (Lond) 93:157–166

    Article  CAS  Google Scholar 

  • Delespaux V, Geysen D, Majiwa PA, Geerts S (2005) Identification of a genetic marker for isometamidium chloride resistance in Trypanosoma congolense. Int J Parasitol 35:235–243

    Article  PubMed  CAS  Google Scholar 

  • Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49:746–756

    PubMed  CAS  Google Scholar 

  • Ellis RP, McNicol JW, Baird E, Booth A, Thomas B, Powell W (1997) The use of AFLPs to examine genetic relatedness in barley. Mol Breed 3:359–369

    Article  CAS  Google Scholar 

  • Elsheikha HM, Schott HC, Mansfield LS (2006) Genetic variation among isolates of Sarcocystis neurona, the agent of protozoal myeloencephalitis, as revealed by amplified fragment length polymorphism markers. Infect Immun 74:3448–3454

    Article  PubMed  CAS  Google Scholar 

  • Estoup A, Angers B (1998) Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. IOS, Amsterdam

  • Fazaeli A, Ebrahimzadeh A (2007) A new perspective on and re-assessment of SAG2 locus as the tool for genetic analysis of Toxoplasma gondii isolates. Parasitol Res 101:99–104

    Article  PubMed  CAS  Google Scholar 

  • Garcia AAF, Benchimol LL, Barbosa ANMM, Geraldi IO, Souza CUL Jr, Souza APD (2004) Comparison of RAPD, RFLP, AFLP and SSR markers for diversity studies in tropical maize inbred lines. Genet Mol Biol 27:579–588

    Article  CAS  Google Scholar 

  • Garcia-Mas J, Oliver M, Gómez-Paniagua H, de Vicente MC (2000) Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor Appl Genet 101:860–864

    Article  CAS  Google Scholar 

  • Gonzalez M, Rodriguez R, Zavala ME, Jacobo JL, Hernandez F, Acosta J, Martinez O, Simpson J (1998) Characterization of Mexican isolates of Colletotrichum lindemuthianum by using differential cultivars and molecular markers. Phytopathol 88:292–299

    Article  CAS  Google Scholar 

  • Grech K, Martinelli A, Pathirana S, Walliker D, Hunt P, Carter R (2002) Numerous, robust genetic markers for Plasmodium chabaudi by the method of amplified fragment length polymorphism. Mol Biochem Parasitol 123:95–104

    Article  PubMed  CAS  Google Scholar 

  • Hill KK, Ticknor LO, Okinaka RT, Asay M, Jackson PJ (2004) Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol 70:1068–1080

    Article  PubMed  CAS  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44:223–270

    Google Scholar 

  • Karp A, Seberg O, Buiatti M (1996) Molecular techniques in the assessment of botanical diversity. Ann Bot 78:143–149

    Article  CAS  Google Scholar 

  • Kumar A, Boggula VR, Sundar S, Shasany AK, Dube A (2009) Identification of genetic markers in sodium antimony gluconate (SAG) sensitive and resistant Indian clinical isolates of Leishmania donovani through amplified fragment length polymorphism (AFLP). Acta Trop 110(1):80–85

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Boggula VR, Misra P, Sundar S, Shasany AK, Dube A (2010) Amplified fragment length polymorphism (AFLP) analysis is useful for distinguishing Leishmania species of visceral and cutaneous forms. Acta Trop 113:202–206

    Article  PubMed  CAS  Google Scholar 

  • Li T (2006) The advancement of AFLP technology. Sheng Wu Gong Cheng Xue Bao 22:861–865

    PubMed  CAS  Google Scholar 

  • Liu Z, Furnier GR (1993) Comparison of allozyme, RFLP, and RAP markers for revealing genetic variation within and between trembling aspen and bigtooth aspen. Theor Appl Genet 87:97–105

    CAS  Google Scholar 

  • Lu J, Knox MR, Ambrose MJ, Brown JKM, Ellis THN (1996) Comparative analysis of genetic diversity in pea assessed by RFLP- and PCR-based methods. Theor Appl Genet 93:1103–1111

    Article  CAS  Google Scholar 

  • Martinelli A, Hunt P, Fawcett R, Cravo PV, Walliker D, Carter R (2005) An AFLP based genetic linkage map of Plasmodium chabaudi. Malar J 4:11

    Article  PubMed  Google Scholar 

  • Masiga DK, Turner CM (2004) Amplified (restriction) fragment length polymorphism (AFLP) analysis. Met Mol Biol 270:173–186

    CAS  Google Scholar 

  • Matthes MC, Edwards KJ (1998) Amplified fragment length polymorphism (AFLP). Chapman and Hall, London

    Google Scholar 

  • Meksem K, Leister D, Peleman J, Zabeau M, Salamini F, Gebhardt C (1995) A high resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet 249:74–81

    Article  PubMed  CAS  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice: AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  PubMed  CAS  Google Scholar 

  • Motamedi GR, Dalimi A, Nouri A, Aghaeipour K (2011) Ultrastructural and molecular characterization of Sarcocystis isolated from camel (Camelus dromedarius) in Iran. Parasitol Res 108:949–954

    Article  PubMed  Google Scholar 

  • Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    Article  PubMed  Google Scholar 

  • Naimuddin M, Nishigaki K (2003) Genome analysis technologies: towards species identification by genotype. Brief Funct Genome Proteome 1:356–371

    Article  CAS  Google Scholar 

  • Odiwuor S, De Doncker S, Maes I, Dujardin JC, Van der Auwera G (2011) Natural Leishmania donovani/Leishmania aethiopica hybrids identified from Ethiopia. Infect Genet Evol 11(8):2113–2118

    Article  PubMed  Google Scholar 

  • Restrepo CM, De La Guardia C, Sousa OE, Calzada JE, Lleonart R (2011) Amplified fragment length polymorphisms reveals high intraspecific variability in field isolates of Leishmania panamensis. Curr Trends Biotechnol Pharm 5:1183–1192

    Google Scholar 

  • Roos MH, Hoekstra R, Plas ME, Otsen M, Lenstra JA (1998) Polymorphic DNA markers in the genome of parasitic nematodes. J Helminthol 72:291–294

    Article  PubMed  CAS  Google Scholar 

  • Rosendahl S, Taylor JW (1997) Development of multiple genetic markers for studies of genetic variation in arbuscular mycorrhizal fungi using AFLP. Mol Ecol 6:821–829

    Article  CAS  Google Scholar 

  • Rubio JM, Berzosa PJ, Benito A (2001) Amplified fragment length polymorphism (AFLP) protocol for genotyping the malarial parasite Plasmodium falciparum. Parasitology 123:331–336

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell DW (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Singh A, Negi MS, Rajagopal J, Bhatia S, Tomar UK, Srivastava PS, Lakshmikumaran M (1999) Assessment of genetic diversity in Azadirachta indica using AFLP markers. Theor Appl Genet 99:272–279

    Article  CAS  Google Scholar 

  • Tait A, Masiga D, Ouma J, MacLeod A, Sasse J, Melville S, Lindegard G, McIntosh A, Turner M (2002) Genetic analysis of phenotype in Trypanosoma brucei: a classical approach to potentially complex traits. Philos Trans R Soc Lond Biol Sci 357:89–99

    Article  CAS  Google Scholar 

  • Travis SE, Maschinski J, Keim P (1996) An analysis of genetic variation in Astragalus cremnophylax var. cremnophylax, a critically endangered plant, using AFLP markers. Mol Ecol 5:735–745

    Article  PubMed  CAS  Google Scholar 

  • Troell K, Engstrom A, Morrison DA, Mattsson JG, Hoglund J (2006) Global patterns reveal strong population structure in Haemonchus contortus, a nematode parasite of domesticated ruminants. Int J Parasitol 36:1305–1316

    Article  PubMed  Google Scholar 

  • Van-Oppen MJH, Rico C, Turner GF, Hewitt GM (2000) Extensive homoplasy, nonstepwise mutations, and shared ancestral polymorphism at a complex microsatellite locus in Lake Malawi cichlids. Mol Biol Evol 17(4):489–498

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acid Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    PubMed  CAS  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res 18:6531–6535

    Article  CAS  Google Scholar 

  • Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Publication 92402629 (Publication No. EP0534858A1)

  • Zhong D, Menge DM, Temu EA, Chen H, Yan G (2006) Amplified fragment length polymorphism mapping of quantitative trait loci for malaria parasite susceptibility in the yellow fever mosquito Aedes aegypti. Genetics 173:1337–1345

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AK was a recipient of a Senior Research Fellowship from the University Grants Commission (UGC), New Delhi, India. Financial assistance to PM by the Council of Scientific and Industrial Research (CSIR), New Delhi, India is gratefully acknowledged. This study has a CDRI-CSIR research communication no. 7872.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuradha Dube.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, A., Misra, P. & Dube, A. Amplified fragment length polymorphism: an adept technique for genome mapping, genetic differentiation, and intraspecific variation in protozoan parasites. Parasitol Res 112, 457–466 (2013). https://doi.org/10.1007/s00436-012-3238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3238-6

Keywords

Navigation