Skip to main content

Advertisement

Log in

Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study was carried out to establish the properties of Carica papaya leaf extract and bacterial insecticide, spinosad on larvicidal and pupicidal activity against the chikungunya vector, Aedes aegypti. The medicinal plants were collected from the area around Bharathiar University, Coimbatore, India. C. papaya leaf was washed with tap water and shade-dried at room temperature. An electrical blender powdered the dried plant materials (leaves). The powder (500 g) of the leaf was extracted with 1.5 l of organic solvents of methanol for 8 h using a Soxhlet apparatus and then filtered. The crude leaf extracts were evaporated to dryness in a rotary vacuum evaporator. The plant extract showed larvicidal and pupicidal effects after 24 h of exposure; however, the highest larval and pupal mortality was found in the leaf extract of methanol C. papaya against the first- to fourth-instar larvae and pupae of values LC50 = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 440.65 ppm, respectively, and bacterial insecticide, spinosad against the first to fourth instar larvae and pupae of values LC50 = I instar was 51.76 ppm, II instar was 61.87 ppm, III instar was 74.07 ppm, and IV instar was 82.18 ppm, and pupae was 93.44 ppm, respectively. Moreover, combined treatment of values of LC50 = I instar was 55.77 ppm, II instar was 65.77 ppm, III instar was 76.36 ppm, and IV instar was 92.78 ppm, and pupae was 107.62 ppm, respectively. No mortality was observed in the control. The results that the leaves extract of C. papaya and bacterial insecticide, Spinosad is promising as good larvicidal and pupicidal properties of against chikungunya vector, A. aegypti. This is an ideal eco-friendly approach for the control of chikungunya vector, A. aegypti as target species of vector control programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aarthi N, Murugan K (2010) Larvicidal and repellent activity of Vetiveria zizanioides L, Ocimum basilicum Linn and the microbial pesticide spinosad against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae) Journal of Biopesticides 3(1) 199–204

    Google Scholar 

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–266

    CAS  Google Scholar 

  • Adebowale A, Ganesan AP, Prassad RNV (2002) Papaya (Carica papaya) consumption is unsafe in pregnancy: Fact or fable? Scientific evaluation of a common belief in some parts of Asia using a rat model. British J Nutr 88:199–203

    Google Scholar 

  • Alder HL, Rossler EB (1977) Introduction to probability and statistics. Freeman, San Francisco, p 246

  • Ali A (1981) Bacillus thuringiensis serovar. israelensis (ABG-6108) against Chironomids and some non target aquatic invertebrates. J Invertebr Pathol 38:264–272

    Google Scholar 

  • Allan SA, Kline DL (1998) Larval rearing water and preexisting eggs influence oviposition by Aedes aegypti and A. albopictus (Diptera: Culicidae). J Med Entomol 35:943–947

    PubMed  CAS  Google Scholar 

  • Amer A, Mehlhorn H (2006) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera: Culicidae). Parasitol Res 99:466–472

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera: Culicidae). Parasitol Res 99:466–472

    PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles, and Culex mosquitoes. Parasitol Res 99:478–490

    PubMed  Google Scholar 

  • Balaraman K, Balasubramanian M, Jambulingam P (1983) Field trial of Bacillus thuringiensis H-14 (VCRC B-17) against Culex and Anopheles larvae. Ind J Med Res 77:38–43

    CAS  Google Scholar 

  • Beehler JW, Mulla MS (1993) Effect of the insect growth regulator methoprene on the ovipositional behavior of Aedes aegypti and Culex quinquefasciatus. J Am Mosq Control Assoc 9:13–16

    PubMed  CAS  Google Scholar 

  • Bond JG, Marina CF, Williams T (2004) The naturally derived insecticide spinosad is highly toxic to Aedes and Anopheles mosquito larvae. Med Vet Entomol 18:50–56

    PubMed  CAS  Google Scholar 

  • Breslin WJ, Marty MS, Vedula U, Liberacki AB, Yano BL (2000) Developmental toxicity of spinosad administered by gavage to CD rats and New Zealand white rabbits. Food Chem Toxicol 38:1103–1112

    PubMed  CAS  Google Scholar 

  • Bret BL, Larson LL, Schoonover JR, Sparks TC, Thompson GD (1997) Biological properties of Spinosad. Down to Earth 52:6–13

    Google Scholar 

  • Cetin H, Yanikoglu A, Cilek JE (2005a) Evaluation of the naturally-derived insecticide spinosad against Culex pipiens L. (Diptera: Culicidae) larvae in septic tank water in Antalya, Turkey. J Vector Ecol 30:151–154

    PubMed  Google Scholar 

  • Cetin H, Yanikoglu A, Cilek JE (2005b) Evaluation of the naturally derived insecticide spinosad against Culex pipiens L. (Diptera: Culicidae) larvae in septic tank water in Antalya, Turkey. J Vect Ecol 30:151–154

    Google Scholar 

  • Chowdhury N, Ghosh A, Chandra G (2008) Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti. BMC Complement Altern Med 8:10 (published online)

    Google Scholar 

  • Cisneros J, Goulson D, Derwent LC, Penagos DI, Hernández O, Williams T (2002) Toxic effects of spinosad on predatory insects. Biol Control 23:156–163

    CAS  Google Scholar 

  • Cleveland CB, Bormett GA, Saunders DG, Powers FL, McGibbon AS, Reeves GL, Rutherford L, Balcer JL (2002) Environmental fate of spinosad. 1. Dissipation and degradation in aqueous systems. J. Agric. Food Chem 50:3244–3256

    CAS  Google Scholar 

  • Copping LG, Menn JJ (2001) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Google Scholar 

  • Corbet PS, Chadee DD (1993) An improved method for detecting substrate preferences shown by mosquitoes that exhibit “skip oviposition.”. Physiol Entomol 18:114–118

    Google Scholar 

  • Curtis CF, Lines JD, Baolin L, Renz A (1991) Natural and synthetic repellents. In: Curtis CF (ed) Control of disease vectors in the community. Wolfe, London, pp 75–92

    Google Scholar 

  • Darriet F, Corbel V (2006) Laboratory evaluation of pyriproxyfen and spinosad, alone and in combination, against Aedes aegypti larvae. J Med Entomol 43:1190–1194

    PubMed  CAS  Google Scholar 

  • Darriet F, Duchon S, Hougard JM (2005) Spinosad: a new larvicide against insecticide-resistant mosquito larvae. J Am Mosq Control Assoc 21:495–496

    PubMed  CAS  Google Scholar 

  • DeAmicis CV, Dripps JE, Hatton CJ, Karr LL (1997) Physical and biological properties of the spinosyns: novel macrolide pest-control agents from fermentation. In: Hedin PA, Hollingworth RM, Masler EP, Miyamoto J, Thompson DG (eds) Phytochemicals for pest control, Symposium Series 658. American Chemical Society, Washington, pp 144–154

    Google Scholar 

  • Dominguez de Maria P, Sinisteraa JB, Tsai Sw, Alcantara AR (2006) Biotech Advances 24: 493–499

  • Emeruwa AC (1982) Antibacterial substance from Carica papaya fruit extract. J Nat Prod 45:123–127

    PubMed  CAS  Google Scholar 

  • Eswarappa S, Benjamin SPE (2007) Renal failure and neuromuscular weakness in Cleistanthus collinus poisoning. J Assoc Physicians India 55:85–86

    PubMed  CAS  Google Scholar 

  • Fay RW, Eliason DA (1966) A preferred oviposition site as a surveillance method for Aedes aegypti. Mosq News 26:531–535

    Google Scholar 

  • Federici BA, Park HW, Bideshi DK, Wirth MC, Johnson JJ (2003) Recombinant bacteria for mosquito control. J Exp Biol 206:3877–3885

    PubMed  CAS  Google Scholar 

  • Filho ECO, Paumgartten FJ (2000) Toxicity of Euphorbia milii latex and niclosamide to snails and nontarget aquatic species. Ecotoxicol Environ Saf 46 (3):342–350

    Google Scholar 

  • Finney DJ (1971) Probit analysis. Cambridge University Press London. pp.68–78

  • Garcia R, Desrochers BD (1979) Toxicity of Bacillus thuringiensis var. israelensis to some California mosquitoes under different conditions. Mosq News 39:541–544

    Google Scholar 

  • Ghosh A, Chowdhury N, Chandra G (2008) Laboratory evaluation of a phytosteroid compound of mature leaves of day jasmine (Solanaceae: Solanales) against larvae of Culex quinquefasciatus (Diptera: Culicidae) and nontarget organisms. Parasitol Res 103:221–277

    Google Scholar 

  • Goldberg L, Margalit J (1977) A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata. Culex univitattus, Aedes aegypti, and Culex pipiens. Mosq News 37:355–358

    Google Scholar 

  • Gould F, Anderson A, Landis D, Van Mellaert J (1991) Feeding behaviour and growth of Heliothis virescens larvae on diets containing Bacillus thuringiensis formulations or endotoxins. Entomol Exp Appl 58:199–210

    Google Scholar 

  • Govindarajan M (2009) Bioefficacy of Cassia fistula Linn. (Leguminosae) leaf extract against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 13:99–103

    PubMed  CAS  Google Scholar 

  • Gubler DJ (1998) Dengue. In: Monath TP (ed) The arboviruses epidemiology and ecology. CRC Press, Boca Raton, pp 223–260

    Google Scholar 

  • Gubler DJ (2004) The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis 27:319–330

    PubMed  CAS  Google Scholar 

  • Gubler DJ, Clark GG (1995) Dengue/dengue hemorrhaghic fever. The emergence of a global health problem. Emerg Infect Dis 1:55–57

    PubMed  CAS  Google Scholar 

  • Guha-Sapir D, Schimme B (2005) Dengue fever: new paradigms for a changing epidemiology. Emerg. Themes Epidemiol 2:1

    Google Scholar 

  • Harrington LC, Edman JD (2001) Indirect evidence against delayed “skip-oviposition” behavior by Aedes aegypti (Diptera: Culicidae) in Thailand. J Med Entomol 38:641–645

    PubMed  CAS  Google Scholar 

  • Huet J, Looze Y, Bartik K, Raussens V, Wintjens R, Boussard P (2006) Structural characterization of the papaya cysteine protinases at low pH. Biochem Biophy Res Commun 341:620–626

    CAS  Google Scholar 

  • Jang YS, Kim MK, Ahn YS, Lee HS (2002) Larvicidal activity of Brazilian plant against Aedes aegypti and Culex pipiens (Diptera: Culicidae) Agri Chem. Biotechnol 4:131–134

    Google Scholar 

  • Kannathasan K, Senthilkumar A, Chandrasekaran M, Venkatesalu V (2007) Differential larvicidal efficacy of four species of Vitex against Culex quinquefasciatus larvae. Parasitol Res 101(6):1721–1723

    PubMed  Google Scholar 

  • Kirst HA, Michel KH, Mynderse JS, Chio EH, Yao RC, Nakatsukasa WM, Boech LD, Occlowitz JL, Paschal JW, Deeter JB, Thompson GD (1992) Discovery, isolation, and structure elucidation of a family of structurally unique fermentation-derived tetracyclic macrolides. In: Baker DR, Fenyes JG, Steffans JJ (eds) Synthesis and chemistry of agrochemicals III. American Chemical Society, Washington, pp 214–225

    Google Scholar 

  • Kovendan K, Murugan K (2011) Effect of medicinal plants on the mosquito vectors from the different agro-climatic regions of Tamil Nadu, India. Adv in Environ Biol 5(2):335–344

    Google Scholar 

  • Kovendan K, Murugan K, Vincent S, Kamalakannan S (2011a) Larvicidal efficacy of Jatropha curcas and bacterial insecticide, Bacillus thuringiensis, against lymphatic filarial vector, Culex quinquefasciatus Say. (Diptera: Culicidae). Parasitol Res. doi:10.1007/s00436-011-2368-6

  • Kovendan K, Murugan K, Vincent S, Donald R. Barnard (2011b) Studies on larvicidal and pupicidal activity of Leucas aspera Willd. (Lamiaceae) and bacterial insecticide, Bacillus sphaericus, against malarial vector, Anopheles stephensi Liston. (Diptera: Culicidae) Parasitol Res DOI 10.1007/s00436-011-2469-2

  • Kramer V (1984) Evaluation of Bacillus sphaericus and B. thuringiensis H-14 for mosquito control in rice fields. Indian J Med Res 80:642–648

    PubMed  CAS  Google Scholar 

  • Lacey LA, Lacey CM (1990) The medical importance of rice and mosquitoes and their control using alternatives to chemical insecticides. J Am Mosq Control Assoc 2:1–93

    CAS  Google Scholar 

  • Lima MG, Maia IC, Sousa BD, Morais SM, Freitas SM (2006) Effect of stalk and leaf extracts from Euphorbiaceae species on Aedes aegypti (Diptera, Culicidae) larvae. Rev Inst Med Trop Sao Paulo 48(4):211–214

    Google Scholar 

  • Liu S, Li QX (2004) Photolysis of spinosyns in seawater, stream water and various aqueous solutions. Chemosphere 56:1121–1127

    PubMed  CAS  Google Scholar 

  • Liu H, Cupp EW, Guo A, Liu N (2004a) Insecticide resistance in Alabama and Florida mosquito strains of Aedes albopictus. J Med Entomol 41:946–952

    PubMed  CAS  Google Scholar 

  • Liu H, Cupp EW, Micher KM, Guo A, Liu N (2004b) Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefaciatus. J Med Entomol 41:408–413

    PubMed  CAS  Google Scholar 

  • Ludlum CT, Felton G, Duffey SS (1991) Plant defense: chlorogenic acid and polyphenol oxidase enhance toxicity of Bacillus thruringiensis subsp. kurstaki to Heliothis zea. J Chem Ecol 17:217–237

    CAS  Google Scholar 

  • Maheswaran R, Sathis S, Ignacimuthu S (2008) Larvicidal activity of Leucus aspera (Willd.) against the larvae of Culex quinquefasciatus Say. and Aedes aegypti L. Int Journal of Int Biol 2(3):214–217

    Google Scholar 

  • Mather TN, DeFoliart GR (1983) Repellency and initial toxicity of Abate and Dursban formulations to Aedes triseriatus in oviposition sites. Mosq News 43:474–479

    CAS  Google Scholar 

  • Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95(5):363–365

    PubMed  Google Scholar 

  • Mello VJ, Gomes MT, Lemos FO, Delfino JL, Andrade SP, Lopes MT, Salas CE (2008) The gastric ulcer protective and healing role of cysteine proteinases from Carica candamarcensis. Phytomedicine 15:237–244

    PubMed  Google Scholar 

  • Moore CG (1977) Insecticide avoidance by ovipositing Aedes aegypti. Mosq News 37:291–293

    Google Scholar 

  • Morena-Sanchez R, Hayden M, James C (2006) A web based multimedia spatial information sytem to document Aedes aegypti breeding sites and dengue fever risk along the US-Mexico border. Health Place 12:715–727

    Google Scholar 

  • Muller G, Schlein Y (2006) Sugar questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int J Parasitol 36:1077–1080

    PubMed  Google Scholar 

  • Munoz V, Sauvain M, Bourdy G, Callapa J, Rojas I, Vargas L, Tae A, Deharo E (2000) The search for natural bioactive compounds through a multidisciplinary approach in Bolivia Part II. Antimalarial activity of some plants used by Mosetene indians. J Ethnopharmacol 69:139–155

    PubMed  CAS  Google Scholar 

  • Okeniyi JA, Ogunlesi TA, Oyelami OA, Adeyemi LA (2007) Effectiveness of dried Carica papaya seeds against human intestinal parasitosis: a pilot study. J Med Food 10:493–499

    Google Scholar 

  • Olagunju JA, Ogunlana CO, Gbile Z (1995) Preliminary studies on the hypoglycemic activity of ethanolic extract of unripe, mature fruits of pawpaw. Nig J Biochem Mol Biol 10:21–23

    Google Scholar 

  • Pancharoen C, Kulwichit W, Tantwichien T, Thisyakorn U, Thisyakorin C (2002) Dengue infection: global concern. J Med Assoc Thai 85:25–33

    Google Scholar 

  • Pates H, Curtis C (2005) Mosquito behavior and vector control. Annu Rev Entomol 50:53–70

    PubMed  CAS  Google Scholar 

  • Perez CM, Marina CF, Bond JG, Rojas JC, Valle J, Williams T (2007) Spinosad, a naturally derived insecticide, for control of Aedes aegypti (Diptera: Culicidae): efficacy, persistence, and elicited oviposition response. J Med Entomol 44(4):631–638

    PubMed  CAS  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102:981–988

    PubMed  Google Scholar 

  • Rahuman AA, Bagavan A, Kamaraj C, Saravanan E, Zahir AA, Elango G (2009a) Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104(6):1365–1372

    PubMed  CAS  Google Scholar 

  • Rawani A, Haldar KM, Ghosh A, Chandra G (2009) Larvicidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 105:1411–1417

    PubMed  Google Scholar 

  • Roark RC (1947) Some promising insecticidal plants. Econ Bot 1:437–445

    CAS  Google Scholar 

  • Romi R, Proietti S, Di Luca M, Cristofaro M (2006) Laboratory evaluation of the bioinsecticide spinosad for mosquito control. J Am Mosq Control Assoc 22:93–96

    PubMed  CAS  Google Scholar 

  • Salgado VL (1997) The mode of action of spinosad and other insect control products. Down to Earth 52:35–44

    Google Scholar 

  • Salgado VL (1998) Studies on the mode of action of spinosad: insect symptoms and physiology correlates. Pest Biochem Physiol 60:91–102

    CAS  Google Scholar 

  • Sarathchandra G, Balakrishnamoorthy P (1998) Acute toxicity of Cleistanthus collinus, an indigenous poisonous plant in Cavia porcellus. J Environ Biol 1:145–148

    Google Scholar 

  • Saunders DG, Bret BL (1997) Fate of spinosad in the environment. Down to Earth 52:14–20

    Google Scholar 

  • Seigler DS, Pauli GF, Nahrstedt A, Leen R (2002) Cyanogenic allosides and glucosides from Passiflora edulis and Carica papaya. Phytochemistry 60:873–882

    PubMed  CAS  Google Scholar 

  • Shaalan EAS, Canyonb D, Younesc MWF, Abdel-Wahaba H, Mansoura AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149–1166

    PubMed  CAS  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2005) Larvicidal potential of Nerium indicum and Thuja oriertelis extracts against malaria and Japanese encephalitis vector. J Environ Biol 26(4):657–660

    PubMed  Google Scholar 

  • Snyder DE, Meyer J, Zimmermann AG, Qiao M, Gissendanner SJ, Cruthers LR, Slone RL, Young DR (2007) Preliminary studies on the effectiveness of the novel pulicide, spinosad, for the treatment and control of fleas on dogs. Vet Parasitol 150(4):345–351

    PubMed  CAS  Google Scholar 

  • Sukumar K, Perich MJ, Boobar LR (1991) Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc 7:210–237

    PubMed  CAS  Google Scholar 

  • Thomas TG, Raghavendra K, Lal S, Saxena VK (2004) Mosquito larvicidal properties of latex from unripe fruits of Carica papaya Linn. (Caricaceae). J Commun Dis 36:290–292

    PubMed  CAS  Google Scholar 

  • Thompson DG, Harris BJ, Buscarini TM, Chartrand DT (2002) Fate of spinosad in litter and soils of a white spruce plantation in central Ontario. Pest Manag Sci 58:397–404

    PubMed  CAS  Google Scholar 

  • Tripathi YC, Rathore M (2001) Role of lipids in natural defense and plant protection. Indian J Forestry 24:448–455

    CAS  Google Scholar 

  • Van den Berghe G (1978) Curr Top Cell Regul 13:97–135

    PubMed  Google Scholar 

  • Verma KVS (1986) Deterrent effect of synthetic pyrethroids on the oviposition of mosquitoes. Curr Sci 55:373–375

    CAS  Google Scholar 

  • Vezzani D, Rubio A, Velazquez SM, Schweigmann N, Wiegand T (2005) Detailed assessment of microhabitat suitability for Aedes aegypti (Diptera: Culicidae) in Buenos Aires, Argentina. Acta Trop 95:123–131

    PubMed  CAS  Google Scholar 

  • Watson GB (2001) Actions of insecticidal spinosyns on caminobutyric acid responses from small-diameter cockroach neurons. Pest Biochem Physiol 71:20–28

    CAS  Google Scholar 

  • WHO (1998) Dengue hemorrhagic fever. Diagnosis, treatment, prevention and control. World Health Organization, Ginebra, Suiza

    Google Scholar 

  • Williams T, Valle J, Vinuela E (2003) Is the naturally derived insecticide spinosad compatible with insect natural enemies? Biocontrol Sci Technol 13:459–475

    Google Scholar 

  • Zolotar RM, Bykhovets AI, Kashkan ZN, Chernov YG, Kovganko NV (2002) Structure-activity relationship for insecticidal steroids. VI. 5, 6-Disubstituted b-sitosterols. Chem Nat Compd 38(2):167–170

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Science and Technology (DST), New Delhi, India and Tamil Nadu State Council for Science and Technology (TNSCST), Chennai, Tamil Nadu for providing financial support for the present work. The authors are grateful to Dr. K. Sasikala, Professor and Head, Department of Zoology, Bharathiar University for the laboratory facilities provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalimuthu Kovendan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovendan, K., Murugan, K., Naresh Kumar, A. et al. Bioefficacy of larvicdial and pupicidal properties of Carica papaya (Caricaceae) leaf extract and bacterial insecticide, spinosad, against chikungunya vector, Aedes aegypti (Diptera: Culicidae). Parasitol Res 110, 669–678 (2012). https://doi.org/10.1007/s00436-011-2540-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-011-2540-z

Keywords

Navigation