Skip to main content

Advertisement

Log in

Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites’ potential to develop acaricide resistance

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The purpose of this study was to estimate the acaricide susceptibility of Varroa destructor populations from Uruguay, which had never been exposed to synthetic acaricides. It was also to determine whether acaricide resistance to coumaphos occurred in apiaries in which acaricide rotation had been applied. Bioassays with acaricides against mite populations that had never been exposed to synthetic acaricides were performed, also against mite populations in which control failures with coumaphos had been reported. Additionally, coumaphos’ effectiveness in honeybee colonies was experimentally tested. The lethal concentration that kills 50% of the exposed animals (LC50) for susceptible mite populations amounted to 0.15 μg/Petri dish for coumaphos and to less than 0.3 μg/Petri dish for the other acaricides. Coumaphos LC50 was above 40 μg/Petri dish for resistant mites. The effectiveness of coumaphos in honeybee colonies parasitized by V. destructor ranged from 17.6% to 93.9%. LC50 for mite populations susceptible to the most commonly applied miticides was determined, and the first case of coumaphos resistance recorded in Uruguay was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott W (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Google Scholar 

  • Anderson Dl, Trueman J (2000) Varroa jacobsoni is more than one species. Exp App Acarol 24:165–189

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association–American Water Works Association and Water Pollution Control Federation) (1992) Standard methods for the examination of water and wastewaters, 18th ed. American Public Health Association, Washington D.C

    Google Scholar 

  • Bogdanov S (2006) Contaminants of bee products. Apidologie 37:1–18

    Article  CAS  Google Scholar 

  • Coles G, Kinoti G (1997) Defining resistance in Schistosoma. Parasitol Today 13:4

    Google Scholar 

  • Colin M, Vandame R, Jourdan P, Pasquale S (1997) Fluvalinate resistance of Varroa jacobsoni Oudemans (Acari: Varroidae) in Mediterranean apiaries of France. Apidologie 28:375–384

    Article  CAS  Google Scholar 

  • De Jong D (2005) Workshop sobre control de la Varroosis en Climas Subtropicales. 27 y 28 de junio, Salta Argentina.

  • Eguaras M, Ruffinengo S (2006) Estrategias para el control de Varroa. Ed. Martin, Mar del Plata

    Google Scholar 

  • Elzen P, Westervelt D (2002) Detection of coumaphos resistance in Varroa destructor in Florida. Am Bee J 142:291–292

    Google Scholar 

  • Elzen P, Eischen F, Baxter J, Pettis J, Elzen G, Wilson W (1998) Fluvalinate resistance in Varroa jacobsoni from several geographic locations. Am Bee J 138(9):674–676

    Google Scholar 

  • Elzen P, Baxter J, Spivak M, Wilson W (1999) Amitraz resistance in Varroa: new discovery in North America. Am Bee J 139(5):362

    Google Scholar 

  • Elzen P, Baxter J, Spivak M, Wilson W (2000) Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie 31:437–441

    Article  CAS  Google Scholar 

  • Floris I, Cabras P, Garau V, Minelli E, Satta A, Troullier J (2001) Persistence and effectiveness of pyrethroids in plastics strips against Varroa jacobsoni (Acari: Varroidae) and mite resistance in a Mediterranean area. J Econ Entomol 94(4):806–810

    Article  PubMed  CAS  Google Scholar 

  • Fries I, Wallner K, Rosenkranz P (1998) Effects on Varroa jacobsoni from acaricides in beeswax. J Apicult Res 37(2):85–90

    CAS  Google Scholar 

  • Greatti M, Milani N, Nazzi F (1992) Reinfestation of an acaricide-treated apiary by Varroa jacobsoni Oud. Exp App Acarol 16(4):279–286

    Article  Google Scholar 

  • Herbert W, Wittherell P, Shimanuki H (1988) Control of Varroa jacobsoni in queen cages and small laboratory cages using amitraz, fluvalinate, and apitol. Am Bee J 128(4):289–292

    Google Scholar 

  • Lindberg C, Melathopoulus A, Winston M (2000) Laboratory evaluation of miticides to control Varroa jacobsoni, a honeybee parasite. J Apicult Res 93:189–198

    CAS  Google Scholar 

  • Lodesani M, Colombo M, Spreafico M (1995) Ineffectiveness of Apistan treatment against the mite Varroa jacobsoni Oud. in several districts of Lombardy (Italy). Apidologie 26:67–72

    Article  Google Scholar 

  • Macedo P, Ellis M, Siegfried B (2002) Detection and quantification of fluvalinate resistance in Varroa mites in Nebraska. Am Bee J 178(2):523–526

    Google Scholar 

  • Maggi M, Ruffinengo S, Gende L, Eguaras N, Sardella N (2008) LC50 baseline levels of amitraz, coumaphos, fluvalinate and flumethrin in populations of Varroa destructor from Buenos Aires Province, Argentina. J Apicult Res 47(4):292–295

    Article  CAS  Google Scholar 

  • Maggi M, Ruffinengo S, Damiani N, Sardella N, Eguaras M (2009) A first detection of Varroa destructor resistance to coumaphos in Argentina. Exp App Acarol 47(4):317–320

    Article  Google Scholar 

  • Maggi M, Damiani N, Ruffinengo S, Principal J, de Jong D, Eguaras M (2010) Brood cell size of Apis mellifera modifies the reproductive behavior of Varroa destructor. Exp App Acarol 50(3):269–279

    Article  Google Scholar 

  • Mathieu L, Faucon J (2000) Changes in the response time for Varroa jacobsoni exposed to amitraz. J Apicult Res 39(3–4):155–158

    CAS  Google Scholar 

  • Milani N (1995) The resistance of Varroa jacobsoni Oud to pyrethroids: a laboratory assay. Apidologie 26:415–429

    Article  CAS  Google Scholar 

  • OECD (1998) Honeybees, acute oral toxicity test. OECD guidelines for the testing of chemicals, guideline 213

  • Onstad D (2008) Insecticide resistance management: biology, economics and prediction. Ed Academic Press, San Diego

    Google Scholar 

  • Rodriguez-Dehaibes SR, Otero-Colina G, Sedas VP, Jimenez JA (2005) Resistance to amitraz and flumethrin in Varroa destructor populations from Veracruz, Mexico. J Apicult Res 44:124–125

    CAS  Google Scholar 

  • Sammataro D, Untalan P, Guerro F, Finley J (2005) The resistance of Varroa mites (Acari: Varroidae) to acaricides and the presence of esterase. Int J Acarol 31(1):67–74

    Article  Google Scholar 

  • Schaub L, Sardy S, Capkun G (2002) Natural variation in baseline data: when do we call a new sample “resistant”? Pest Manag Sci 58:959–963

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE (1989) Managing resistance with multiple pesticide tactics: theory, evidence and recommendations. J Econ Entomol 82:1263–1269

    PubMed  CAS  Google Scholar 

  • Thompson H, Brown M, Ball R, Bew M (2002) First report of Varroa destructor resistance to pyrethroids in the UK. Apidologie 33:357–366

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (1986) Hazard evaluation division. Standard evaluation procedure. Ecological risk assessment EPA 540/9-85-001, p 96

  • Wallner K (1999) Varroacides and their residues in bee products. Apidologie 30:235–248

    Article  CAS  Google Scholar 

  • Watkins M (1997) Resistance and its relevance to beekeeping. Bee World 78:15–22

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the UNMDP, CONICET, and CREO (Oportunidades para Conservación, Investigación y Educación). This research was supported by a grant of ANPCyT, Picto 443 to M. E. and by a grant of Creo to M. M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Daniel Maggi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maggi, M.D., Ruffinengo, S.R., Mendoza, Y. et al. Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites’ potential to develop acaricide resistance. Parasitol Res 108, 815–821 (2011). https://doi.org/10.1007/s00436-010-2122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2122-5

Keywords

Navigation