Skip to main content

Advertisement

Log in

Multilocus genetic analysis of Cryptosporidium parvum from Egypt

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Cryptosporidium parvum is a ubiquitous zonootic parasite causing enteritis in man and animals. Cryptosporidium infection was confirmed microscopically in neonatal calves (less than 6 weeks of age) at Kafr El Sheikh Province, Egypt. Multilocus analysis using a wide array of genetic markers was carried out to assess genetic diversity of C. parvum isolates. PCR amplification and partial sequence analysis of 70 kDa heat shock protein, dihydrofolate reductase, alpha-tubulin, elongation factor 1 alpha as well as thrombospondin-related anonymous protein of Cryptosporidium-1, and thrombospondin-related anonymous protein of Cryptosporidium-2 gene markers were achieved. Data indicated that the analyzed isolates belong to C. parvum genotype II with obvious sequence heterogeneity compared with counterparts deposited in Genebank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Messih I, Wierzba T, Abu-Elyazeed R, Ibrahim A, Ahmed S, Kamal K, Sanders J, Frenck R (2005) Diarrhea associated with Cryptosporidium parvum among young children of the nile river delta in Egypt. J Trop Pediatr 51:154–159

    Article  PubMed  Google Scholar 

  • Abrahamsen M, Templeton T, Enomoto S, Abrahante J, Zhu G, Lancto C, Deng M, Liu C, Widmer G, Tzipori S, Buck G, Xu P, Bankier A, Dear P, Konfortov B, Spriggs H, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    Article  CAS  PubMed  Google Scholar 

  • Alves M, Xiao L, Sulaiman I, Lal AA, Matos O, Antunes F (2003) Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. J Clin Microbiol 41:2744–2747

    Article  CAS  PubMed  Google Scholar 

  • Amer S, Osman S, Mehres A (2002) Studies on cryptosporidiosis in Friesian calf with special references to hematology and immune response. Proc Int Conf Biol Sci ICBS 2:185–195

    Google Scholar 

  • Amer S, Honma H, Ikarashi M, Tada C, Fukuda Y, Suyama Y, Nakai Y (2010) Cryptosporidium genotypes and subtypes in dairy calves in Egypt. Vet Parasitol 169:382–386

    Article  CAS  PubMed  Google Scholar 

  • Bonafonte M, Priest J, Garmon D, Arrowood M, Mead J (1997) Isolation of the gene coding for elongation factor-1alpha in Cryptosporidium parvum. Biochim Biophys Acta 1351:256–260

    CAS  PubMed  Google Scholar 

  • Brook E, Anthony Hart C, French N, Christley R (2009) Molecular epidemiology of Cryptosporidium subtypes in cattle in England. Vet J 179:378–382

    Article  CAS  PubMed  Google Scholar 

  • Caccio S, Thompson R, McLauchlin J, Smith H (2005) Unravelling Cryptosporidium and Giardia epidemiology. Trends Parasitol 21:430–437

    Article  CAS  PubMed  Google Scholar 

  • Casemore D, Armstrong M, Sands R (1985) Laboratory diagnosis of cryptosporidiosis. J Clin Pathol 38(12):1337–1341

    Article  CAS  PubMed  Google Scholar 

  • Chalmers R, Davies A (2010) Minireview: clinical cryptosporidiosis. Exp Parasitol 124:138–146

    Article  PubMed  Google Scholar 

  • Coklin T, Farber J, Parrington L, Dixon B (2007) Prevalence and molecular characterization of Giardia duodenalis and Cryptosporidium spp. in dairy cattle in Ontario, Canada. Vet Parasitol 150:297–305

    Article  CAS  PubMed  Google Scholar 

  • Coklin T, Uehlinger F, Farber J, Barkema H, O'Handley R, Dixon B (2009) Prevalence and molecular characterization of Cryptosporidium spp. in dairy calves from 11 farms in Prince Edward Island, Canada. Vet Parasitol 160:323–326

    Article  CAS  PubMed  Google Scholar 

  • DuPont H, Chappell C, Sterling C, Okhuisen P, Rose J, Jakubowski W (1995) The infectivity of Cryptosporidium parvum in healthy volunteers. N Engl J Med 332:855–859

    Article  CAS  PubMed  Google Scholar 

  • Eck R, Dayhoff M (1966) Atlas of protein sequence and structure. National Biomedical Research Foundation, Silver Springs, Maryland

    Google Scholar 

  • Elwin K, Chalmers R, Roberts R, Guyl E, D Casemore (2001) Modification of a rapid method for the identification of gene-specific polymorphisms in Cryptosporidium parvum and its application to clinical and epidemiological investigations. Appl Environ Microbiol 67:5581–5584

    Article  CAS  PubMed  Google Scholar 

  • Fayer R, Morgan U, Upton S (2000) Epidemiology of Cryptosporidium: transmission, detection and identification. Int J Parasitol 30:1305–1322

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gibbons C, Gazzardb B, Ibrahim M, Morris-Jonesb S, Ong C, Awad-El-Kariem F (1998) Correlation between markers of strain variation in Cryptosporidium parvum: evidence of clonality. Parasitol Int 47:139–147

    Article  CAS  Google Scholar 

  • Jex A, Pangasa A, Campbell B, Whipp M, Hogg G, Sinclair M, Stevens M, Gasser R (2008) Classification of Cryptosporidium species from patients with sporadic cryptosporidiosis by use of sequence-based multilocus analysis following mutation scanning. J Clin Microbiol 46:2252–2262

    Article  CAS  PubMed  Google Scholar 

  • Khramtsov N, Tilley M, Blunt D, Montelone B, Upton S (1995) Cloning and analysis of a Cryptosporidium parvum gene encoding a protein with homology to cytoplasmic form Hsp70. J Eukaryot Microbiol 42:416–422

    Article  CAS  PubMed  Google Scholar 

  • MacDonald L, Armson A, Thompson R, Reynoldson J (2003) Characterization of factors favoring the expression of soluble protozoan tubulin proteins in Escherichia coli. Protein Expr Purif 29:117–122

    Article  CAS  PubMed  Google Scholar 

  • Misic Z, Abe N (2007) Subtype analysis of Cryptosporidium parvum isolates from calves on farms around Belgrade, Serbia and Montenegro, using the 60 kDa glycoprotein gene sequences. Parasitol 134:351–358

    Article  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Opitz C, Soldati D (2002) The glideosome': a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 45:597–604

    Article  CAS  PubMed  Google Scholar 

  • Peng M, Xiao L, Freeman A, Arrowood M, Escalante A, Weltman A, Ong C, Mac Kenzie W, Lal A, Beard C (1997) Genetic polymorphism among Cryptosporidium parvum isolates: evidence of two distinct human transmission cycles. Emerg Infect Dis 3:567–573

    Article  CAS  PubMed  Google Scholar 

  • Perz J, Le Blancq S (2001) Cryptosporidium parvum infection involving novel genotypes in wildlife from lower New York State. Appl Environ Microbiol 67:1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Putignani L, Possenti A, Cherchi S, Pozio E, Crisanti A, Spano F (2008) The thrombospondin-related protein CpMIC1 (CpTSP8) belongs to the repertoire of micronemal proteins of Cryptosporidium parvum. Mol Biochem Parasitol 157:98–101

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Satoh M, Kimata I, Iseki M, Nakai Y (2005) Gene analysis of Cryptosporidium parvum HNJ-1 strain isolated in Japan. Parasitol Res 97:452–457

    Article  PubMed  Google Scholar 

  • Smith H, Rose J (1998) Waterborne cryptosporidiosis: current status. Parasitol Today 4:14–22

    Article  Google Scholar 

  • Spano F, Putignani L, Naitza S, Puri C, Wright S, Crisanti A (1998) Molecular cloning and expression analysis of a Cryptosporidium parvum gene encoding a new member of the thrombospondin family. Mol Biochem Parasitol 92:147–162

    Article  CAS  PubMed  Google Scholar 

  • Sturdee A, Chalmers R, Bull S (1999) Detection of Cryptosporidium oocysts in wild animals of mainland Britain. Vet Parasitol 80:273–280

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman I, Xiao L, Yang C, Escalante L, Moore A, Beard C, Arrowood M, Lal A (1998) Differentiating human from animal isolates of Cryptosporidium parvum. Emerg Infect Dis 4:681–685

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman I, Morgan U, Thompson R, Lal A, Xiao L (2000) Phylogenetic relationships of Cryptosporidium parasites based on the 70 kilodalton heat shock protein (HSP70) gene. Appl Environ Microbiol 66:2385–2391

    Article  CAS  PubMed  Google Scholar 

  • Sulaiman I, Lal A, Xiao L (2001) A population genetic study of the Cryptosporidium parvum human genotype parasites. J Eukaryot Microbiol 48(S1):24S–27S

    Article  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS 101:11030–11035

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanriverdi S, Grinberg A, Chalmers RM, Hunter P, Petrovic Z, Akiyoshi D, London E, Zhang L, Tzipori S, Tumwine JK, Widmer G (2008) Inferences about the global population structures of Cryptosporidium parvum and Cryptosporidium hominis. Appl Environ Microbiol 74:7227–7234

    Article  CAS  PubMed  Google Scholar 

  • Tzipori S, Widmer G (2008) A hundred-year retrospective on cryptosporidiosis. Trends Parasitol 24:184–189

    Article  PubMed  Google Scholar 

  • Vasquez J, Gooze L, Kim K, Gut J, Petersen C, Nelson R (1996) Potential antifolate resistance determinants and genotypic variation in the bifunctional dihydrofolate reductase-thymidylate synthase gene from human and bovine isolates of Cryptosporidium parvum. Mol Biochem Parasitol 79:153–165

    Article  CAS  PubMed  Google Scholar 

  • Wade S, Mohammed H, Schaaf S (2000) Prevalence of Giardia sp., Cryptosporidium parvum and Cryptosporidium muris (C. andersoni) in 109 dairy herds in five counties of southeastern New York. Vet Parasitol 93:1–11

    Article  CAS  PubMed  Google Scholar 

  • Wielinga P, de Vries A, van der Goot T, Mank T, Mars M, Kortbeek L, van der Giessen J (2008) Molecular epidemiology of Cryptosporidium in humans and cattle in The Netherlands. Intl J Parasitol 38:809–817

    Article  CAS  Google Scholar 

  • Youssef F, Adib I, Riddle M, Schlett C (2008) A review of cryptosporidiosis in Egypt. J Egypt Soc Parasitol 38:9–28

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Nakai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amer, S., Fayed, M., Honma, H. et al. Multilocus genetic analysis of Cryptosporidium parvum from Egypt. Parasitol Res 107, 1043–1047 (2010). https://doi.org/10.1007/s00436-010-1967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-1967-y

Keywords

Navigation