Skip to main content
Log in

Biometric study of ruminant carpal bones and implications for phylogenetic relationships

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

The mammalian Carpus is a complex of several small bones with multiple interactions during walking. Therefore, it is highly probable that different mammalian families developed distinctive constellations in their Carpi, which could be useful for biometric identification of phylogenetic groupings. The carpal bones of nineteen extant ruminant species (nine bovid, nine cervid, and one moschid) have been investigated to search for biometric traits which are diagnostic for the three families. Additionally, we searched for diverging functional adaptations in the carpal constellations. Therefore, measurements have been taken from the five main carpals, which are carrying the body weight. As a sesamoid bone, Os carpi accessorium was excluded. After transformation of the data into their natural logarithms, multivariate methods of factor analyses and discriminant analyses were performed for each bone. Bivariate plots of the factor scores allowed a clear separation of bovids and cervids. The only one species of the Moschidae (Moschus moschiferus) lies closer to the cervids than to the bovids. The grouping is due to phylogenetic relationships and not due to functional differences in the groups or differing habitat preferences. Generally, the carpals of cervids are more slender and higher in contrast to the bulky and flat carpals in bovids. This approach could be used to assign isolated carpal bones found in fossil sites to their ruminant family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agnarsson I, May-Collado LJ (2008) The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of cytochrome b to provide reliable species-level phylogenies. Mol Phylogenet Evol 48:964–985. doi:10.1016/j.ympev.2008.05.046

    Article  CAS  PubMed  Google Scholar 

  • Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512. doi:10.1038/nature05634

    Article  CAS  PubMed  Google Scholar 

  • Di Stefano G, Petronio C (2003) Systematics and evolution of the Eurasian Plio-Pleistocene tribe Cervini (Artiodactyla, Mammalia). Geol Romana 36:311–334

    Google Scholar 

  • Döppes D (1997) Die jungpleistozäne Säugetierfauna der Gudenushöhle (Niederösterreich). Wiss Mitt Niederösterr Landesmuseum 10:17–32

    Google Scholar 

  • Galik A (1997) Die Ungulata aus der Schusterlucke im Kremstal (Waldviertel, Niederösterreich). Wiss Mitt Niederösterr Landesmuseum 10:83–103

    Google Scholar 

  • Guha S, Goyal SP, Kashyap VK (2007) Molecular phylogeny of musk deer: a genomic view with mitochondrial 16S rRNA and cytochrome b gene. Mol Phylogenet Evol 42:585–597. doi:10.1016/j.ympev.2006.06.020

    Article  CAS  PubMed  Google Scholar 

  • Hassanin A, Douzery EJP (2003) Molecular and morphological phylogenies of Ruminantia and the alternative position of the Moschidae. Syst Biol 52:206–228. doi:10.1080/10635150390192726

    Article  PubMed  Google Scholar 

  • Hassanin A, Delsuc F, Ropiquet A, Hammer C, Jansen van Vuuren B, Matthee C, Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT, Couloux A (2012) Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol 335:32–50. doi:10.1016/j.crvi.2011.11.002

    Article  PubMed  Google Scholar 

  • Hildebrand M, Goslow GE (2001) Analysis of vertebrate structure, 5th edn. Wiley, New York

    Google Scholar 

  • Hughes S, Hayden TJ, Douady CJ, Tougard C, Germonpré M, Stuart A, Lbova L, Carden RF, Hänni C, Say L (2006) Molecular phylogeny of the extinct giant deer, Megaloceros giganteus. Mol Phylogenet Evol 40:285–291. doi:10.1016/j.ympev.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  • Janis CM (1988) New ideas in ungulate phylogeny and evolution. Trends Ecol Evol 3:291–297

    Article  CAS  PubMed  Google Scholar 

  • Janis CM, Scott KM (1987) The interrelationships of higher ruminant families with special emphasis on the members of the Cervoidea. Am Mus Novit 2893:1–85

    Google Scholar 

  • Janis CM, Scott KM (1988) The phylogeny of the Ruminantia (Artiodactyla, Mammalia). In: Benton MJ (ed) The phylogeny and classification of the tetrapods, 2. Clarendon Press, Oxford, pp 273–282

    Google Scholar 

  • Kappelman J (1988) Morphology and locomotor adaptations of the bovid femur in relation to habitat. J Morphol 198:119–130

    Article  CAS  PubMed  Google Scholar 

  • Kappelman J (1991) The paleoenvironment of Kenyapithecus at Fort Ternan. J Hum Evol 20:95–129

    Article  Google Scholar 

  • Köhler M (1993) Skeleton and habitat of recent and fossil ruminants. Münchner Geowiss Abh A 25:1–88

    Google Scholar 

  • Leinders JJM, Heintz E (1980) The configuration of the lacrimal orifice in pecorans and tragulids (Artiodactyla, Mammalia) and its significance for the distinction between Bovidae and Cervidae. Beaufortia 30(7):155–162

    Google Scholar 

  • Martin T (1987) Artunterschiede an den Langknochen großer Artiodactyla des Jungpleistozäns Mitteleuropas. Cour Forschungsinst Senckenb 96:1–124

    Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of Mammals above the species level. Columbia University Press, New York

    Google Scholar 

  • Nickel R, Schummer A, Seiferle E (2004) Lehrbuch der Anatomie der Haustiere. Band 1: Bewegungsapparat, 8th edn. Parey Verlag, Stuttgart

  • Nowak RM (1991) Walker’s mammals of the world, 5th edn. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Pitra C, Fickel J, Meijaard E, Groves CP (2004) Evolution and phylogeny of old world deer. Mol Phylogenet Evol 33:880–895. doi:10.1016/j.ympev.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  • Randi E, Mucci N, Claro-Hergueta F, Bonnet A, Douzery EJP (2001) A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Anim Conserv 4:1–11. doi:10.1017/S1367943001001019

    Article  Google Scholar 

  • Schellhorn R (2009) Eine Methode zur Bestimmung fossiler Habitate mittels Huftierlangknochen. Dissertation, Eberhard Karls Universität, Tübingen, http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-39180

  • Schloeth R (1988) Damhirsche (Gattung Dama). In: Grzimek B (ed) Grzimeks Enzyklopädie Säugetiere, vol 5. Kindler, München, pp 151–161

    Google Scholar 

  • Schmid E (1972) Atlas of animal bones: for prehistorians, archaeologists and quaternary geologists. Elsevier, Amsterdam

    Google Scholar 

  • Soergel W (1928) Ein kleiner Wolf aus den Kiesen von Süßenborn. Z Deutsch Geol Ges 80:227–237

    Google Scholar 

  • Starck D (1979) Vergleichende Anatomie der Wirbeltiere auf evolutionsbiologischer Grundlage. Bd.2 Das Skeletsystem: Allgemeines, Skeletsubstanzen, Skelet der Wirbeltiere einschließlich Lokomotionstypen. Springer, Berlin

  • Yalden DW (1971) The functional morphology of the carpus in ungulate mammals. Acta Anat 78:461–487

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Erich Weber and Jürgen Rösinger (both ZSTÜ), and Rainer Hutterer (ZFMK) for access to the material. We also thank two anonymous reviewers for helpful comments to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Schellhorn.

Additional information

Communicated by A. Schmidt-Rhaesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schellhorn, R., Pfretzschner, HU. Biometric study of ruminant carpal bones and implications for phylogenetic relationships. Zoomorphology 133, 139–149 (2014). https://doi.org/10.1007/s00435-013-0209-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-013-0209-0

Keywords

Navigation