Skip to main content

Advertisement

Log in

Ontogeny of skull size and shape changes within a framework of biphasic lifestyle: a case study in six Triturus species (Amphibia, Salamandridae)

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

As with many other amphibians, Triturus species are characterized by a biphasic life cycle with abrupt changes in the cranial skeleton during metamorphosis. The post-metamorphic shape changes of the cranial skeleton were investigated using geometric morphometric techniques in six species: Triturus alpestris, T. vulgaris, T. dobrogicus, T. cristatus, T. carnifex, and T. karelinii. The comparative analysis of ontogenetic trajectories revealed that these species have a conserved developmental rate with divergent ontogenetic trajectories of the ventral skull shape that mainly reflect phylogenetic relatedness. A striking exception in the ontogenetic pattern was possibly found in T. dobrogicus, characterized by a marked increase in the developmental rate compared to the other newt species. The size-related shape changes explained a large proportion of shape change during post-metamorphic growth within each species, with marked positive allometric growth of skull elements related to foraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5–16

    Google Scholar 

  • Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317

    Google Scholar 

  • Arntzen JW (2000) A growth curve for the newt Triturus cristatus. J Herpetol 34:227–232

    Article  Google Scholar 

  • Birch JM (1999) Skull allometry in the marine toad, Bufo marinus. J Morphol 241:115–126

    Article  PubMed  CAS  Google Scholar 

  • Bolkay StJ (1928) Die schädel der salamandrinen, mit besonderer rückicht auf ihre systematische bedeutung. Zeitshrift für anatomie und entwicklungsgechichte 86:260–319

    Google Scholar 

  • Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bookstein FL (1996) Combining the tools of geometric morphometrics. In: Marcus LF, Corti M, Loy A, Nayulor GJP, Slice DE (eds) Advances in morphometrics. Plenum Press, New York, pp 131–151

    Google Scholar 

  • Cane WP (1993) The ontogeny of postcranial integration in the common tern, Sterna hirundo. Evolution 47:1138–1151

    Article  Google Scholar 

  • Cardini A (2003) The geometry of the marmot (Rodentia: Sciuridae) mandible: phylogeny and patterns of morphological evolution. Syst Biol 52:186–205

    Article  PubMed  Google Scholar 

  • Cardini A, O’Higgins P (2004) Patterns of morphological evolution in Marmota (Rodentia, Sciuridae): geometric morphometrics of the cranium in the context of marmot phylogeny, ecology and conservation. Biol J Linn Soc 82:385–407

    Article  Google Scholar 

  • Dingerkus G, Uhler LD (1977) Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technol 52:229–232

    PubMed  CAS  Google Scholar 

  • Djorović A, Kalezić ML (2000) Paedogenesis in European newts (Triturus: Salamandridae): cranial morphology during ontogeny. J Morphol 243:127–139

    Article  PubMed  Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical shape analysis. Wiley, New York

    Google Scholar 

  • Duellman WE, Trueb L (1986) Biology of amphibians. McGraw Hill, New York

    Google Scholar 

  • Emerson SB, Bramble DM (1993) Scaling, allometry, and skull design. In: Hanken J, Hall BK (eds) The skull. Functional and evolutionary mechanisms, vol 3. The University of Chicago Press, Chicago, pp 384–421

    Google Scholar 

  • Gould SJ (1977) Ontogeny and phylogeny. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Griffiths RA (1996) Newts and salamanders of Europe. Academic, San Diego, CA

    Google Scholar 

  • Goodall CR (1991) Procrustes methods in the statistical analysis of shape. J R Stat Soc B 53:285–339

    Google Scholar 

  • Hagström T (1977) Growth studies and ageing methods for adult Triturus vulgaris L. and T. cristatus Laurenti (Urodela, Salamandridae). Zool Scr 6:61–68

    Article  Google Scholar 

  • Ivanović A, Kalezić ML, Aleksić I (2005) Morphological integration of cranium and postcranial skeleton during ontogeny of paedomorphic European newts (Triturus vulgaris and T. alpestris). Amphibia-Reptilia 26:485–495

    Article  Google Scholar 

  • Klingenberg CP (1998) Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol Rev 73:79–123

    Article  PubMed  CAS  Google Scholar 

  • Larson PM (2004) Chondrocranial morphology and ontogenetic allometry in larval Bufo americanus (Anura, Bufonidae). Zoomorphology 123:95–106

    Article  Google Scholar 

  • Larson PM (2005) Ontogeny, phylogeny, and morphology in anuran larvae: morphometric analysis of cranial development and evolution in Rana tadpoles (Anura: Ranidae). J Morphol 264:34–52

    Article  PubMed  Google Scholar 

  • Lebedkina NS (2004) Evolution of the amphibian skull. In: Kuzmin SL (ed) Advances in amphibian research in the Former Soviet Union, vol 9. Pensoft Publishers, Sofia, pp 1–239

    Google Scholar 

  • Macgregor HC, Sessions SK, Arntzen JW (1990) An integrative analysis of phylogenetic relationships among newts of the genus Triturus (Family Salamandridae), using comparative biochemistry, cytogenetics and reproductive interactions. J Evol Biol 3:329–373

    Article  Google Scholar 

  • McKinney ML, McNamara KJ (1991) Heterochrony: the evolution of ontogeny. Plenum Press, New York

    Google Scholar 

  • Miaud C, Guyetant R, Faber H (2000) Age, size, and growth of the alpine newt, Triturus alpestris (Urodela: Salamandridae), at high altitude and review of life-history trait variation throughout its range. Herpetologica 56:135–144

    Google Scholar 

  • Mitteroecker P, Gunz P, Bookstein FL (2005) Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan panicus versus Pan troglodytes. Evol Dev 7:244–258

    Article  PubMed  Google Scholar 

  • Monteiro LR (1999) Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Syst Biol 48:192–199

    Article  PubMed  CAS  Google Scholar 

  • Monteiro LR, Lessa LG, Abe AS (1999) Ontogenetic variation in skull shape of Thrichomys apereoides (Rodentia: Echimyidae). J Mammal 80:102–112

    Article  Google Scholar 

  • Moss ML, Young RW (1960) A function approach to craniology. Amer J Phys Anthropol 18:281–292

    Article  CAS  Google Scholar 

  • Olgun K, Uzum N, Avci A, Miaud C (2005) Age, size and growth of the southern crested newt Triturus karelinii (Strauch 1870) in a population from Bozdag (Western Turkey). Amphibia-Reptilia 26:223–230

    Article  Google Scholar 

  • Reilly SM (1990) Comparative ontogeny of cranial shape in salamanders using resistant fit theta rho analysis. In: Rohlf FJ, Bookstein FL (eds) Proceedings of the Michigan morphometrics workshop. University of Michigan Museum of Zoology, Special Publication Number 2, pp 311–321

  • Rose CS (2003) The developmental morphology of salamander skulls. In: Heatwole H, Davies M (eds) Amphibian biology. Osteology, vol. 5. Surrey Beatty and Sons, Australia, pp 1686–1783

    Google Scholar 

  • Rohlf FJ (2004) tpsRegr program, Version 1.30, Ecology & Evolution, SUNY at Stony Brook. http://life.bio.sunysb.edu/morph/

  • Rohlf, FJ (2005) tpsDig program, Version 2.04, Ecology & Evolution, SUNY at Stony Brook. http://life.bio.sunysb.edu/morph/

  • Rohlf FJ, Slice D (1990) Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Schmidt BR, Van Buskirk J (2005) A comparative analysies of predator-induced plasticity in larval Triturus newts. J Evol Biol 18:415–425

    Article  PubMed  CAS  Google Scholar 

  • Sheets HD (2000) Integrated Morphometrics Package (IMP). http://www2.canisius.edu/∼sheets/

  • Smirnov SV, Vassilieva AB (2003) Skeletal and dental ontogeny in the smooth newt, Triturus vulgaris (Urodela: Salamandridae): role of thyroid hormone in its regulation. Russ J Herp 10:93–110

    Google Scholar 

  • Steinfartz S, Hwang UW, Tautz D, Öz M, Veith M (2002) Molecular phylogeny of the salamandrid genus Neurergus: evidence for an intrageneric switch of reproductive biology. Amphibia-Reptilia 23:419–431

    Article  Google Scholar 

  • Steinfartz S, Vicario S, Arntzen JW, Caccone A (2006) A bayesian approach and behavior: reconsidering phylogenetic and evolutionary patterns of the Salamandridae with emphasis on Triturus newts. J Exp Zool 306B:1–24

    Article  Google Scholar 

  • Titus TA, Larson A (1995) A molecular phylogenetic perspective on the evolutionary radiation of the salamander family Salamandridae. Sys Biol 44:125–151

    Article  Google Scholar 

  • Trueb L (1993) Patterns of cranial diversity among the Lissamphibia. In: Hanken J, Hall BK (eds) The skull. Patterns of structural and systematic diversity, vol 2. University of Chicago Press, Chicago, pp 255–343

    Google Scholar 

  • Van Buskirk J, Schmidt BR (2000) Predator-induced phenotypic plasticity in larval newts: trade-offs, selection, and variation in nature. Ecology 81:3009–3028

    Article  Google Scholar 

  • Weisrock DW, Papenfuss TJ, Macey JR, Litvinchuk SN, Polymeni R, Ugurtas IH, Zhao E, Jowkar H, Larson A (2006) A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata). Mol Phylogenet Evol 41:368–383

    Article  PubMed  CAS  Google Scholar 

  • Yeh J (2002) The evolution of development: two portraits of skull ossification in pipoid frogs. Evolution 56:2484–2489

    PubMed  Google Scholar 

  • Zajc I, Arntzen JW (1999) Phylogenetic relationships of the European newt (genus Triturus) tested with mitochondrial DNA sequence data. Contrib Zool 68:73–81

    Google Scholar 

  • Zelditch ML (1988) Ontogenetic variation in patterns of phenotypic integration in the laboratory rat. Evolution 42:28–41

    Article  Google Scholar 

  • Zelditch ML, Carmichael AC (1989) Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fulviventer. Evolution 43:814–824

    Article  Google Scholar 

  • Zelditch ML, Bookstein FL, Lundrigan BL (1992) Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution 46:1164–1180

    Article  Google Scholar 

  • Zelditch ML, Sheets HD, Fink WL (2000) Spatiotemporal reorganisation of growth rate in the evolution of ontogeny. Evolution 54:1363–1371

    PubMed  CAS  Google Scholar 

  • Zelditch ML, Moscarella RA (2004) Spatial and temporal dynamics if integration. In: Pigliucci M, Preston K (eds) Phenotypic integration: studying the ecology and evolution of complex phenotypes. Oxford University Press, New York, pp 274–301

    Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets DH, Fink WL (2004) Geometric morphometrics for biologists: a primer. Elsevier Academic, San Diego

    Google Scholar 

Download references

Acknowledgments

We are greatly indebted to M. Zelditch for assistance with the analyses, as well as for useful comments on a previous version of the paper. The clarity of this article was greatly improved by the comments of T. Bartolomaeus and two anonymous reviewers. This research was supported by the Serbian Ministry of Science and Environmental Protection (“Patterns of amphibian and reptile diversity on the Balkan Peninsula,” grant 143052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Ivanović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanović, A., Vukov, T.D., Džukić, G. et al. Ontogeny of skull size and shape changes within a framework of biphasic lifestyle: a case study in six Triturus species (Amphibia, Salamandridae). Zoomorphology 126, 173–183 (2007). https://doi.org/10.1007/s00435-007-0037-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-007-0037-1

Keywords

Navigation