Skip to main content

Advertisement

Log in

Fusion with human lung cancer cells elongates the life span of human umbilical endothelial cells and enhances the anti-tumor immunity

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Human umbilical endothelial cells (HUVECs) have been proved as an effective whole-cell vaccine inhibiting tumor angiogenesis. However, HUVECs divide a very limited number of passages before entering replicative senescence, which limits its application for clinical situation. Here, we fused HUVECs with human pulmonary adenocarcinoma cell line A549s and investigated the anti-tumor immunity of the hybrids against mice Lewis lung cancer.

Methods

HUVECs were fused with A549s using polyethylene glycol and were sorted by flow cytometry. The fusion cells (HUVEC–A549s) were confirmed by testing the expression of telomerase and VE-cadherin, the senescence-associated β-galactosidase activity, and tube formation ability. HUVEC–A549s were then irradiated and injected into the C57BL/6 mice of protective, therapeutic, and metastatic models. The mechanism of the anti-tumor immunity was explored by analyzing mice sera, spleen T lymphocytes, tumor microenvironment, and histological changes.

Results

HUVEC–A549s coexpressed tumor and endothelial markers and maintained the vascular function of tube forming at passage 30 without showing signs of senescence. HUVEC–A549s could induce protective and therapeutic anti-tumor activity for LL2 model and presented stronger activity against metastasis than HUVECs. Both humoral and cellular immunity were participated in the anti-angiogenic activity, as HUVECs-neutralizing IgG and HUVECs-toxic lymphocytes were increased. Angiogenic mediators (VEGF and TGF-β) and tumor microenvironment cells MDSCs and Tregs were also diminished.

Conclusions

Our findings might provide a novel strategy for HUVECs-related immunotherapy, and this vaccine requires lower culture condition than primary HUVECs while enhancing the anti-tumor immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anno K, Hayashi A, Takahashi T, Mitsui Y, Ide T, Tahara H (2007) Telomerase activation induces elongation of the telomeric single-stranded overhang, but does not prevent chromosome aberrations in human vascular endothelial cells. Biochem Biophys Res Commun 353(4):926–932

    Article  PubMed  CAS  Google Scholar 

  • Avigan D, Vasir B, Gong J, Borges V, Wu Z, Uhl L, Atkins M, Mier J, McDermott D, Smith T, Giallambardo N, Stone C, Schadt K, Dolgoff J, Tetreault JC, Villarroel M, Kufe D (2004) Fusion cell vaccination of patients with metastatic breast and renal cancer induces immunological and clinical responses. Clin Cancer Res 10(14):4699–4708

    Article  PubMed  CAS  Google Scholar 

  • Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–835

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beck A, Haeuw JF, Wurch T, Goetsch L, Bailly C, Corvaia N (2010) The next generation of antibody-drug conjugates comes of age. Discov Med 10(53):329–339

    PubMed  Google Scholar 

  • Bocker W, Yin Z, Drosse I, Haasters F, Rossmann O, Wierer M, Popov C, Locher M, Mutschler W, Docheva D, Schieker M (2008) Introducing a single-cell-derived human mesenchymal stem cell line expressing hTERT after lentiviral gene transfer. J Cell Mol Med 12(4):1347–1359

    Article  PubMed  PubMed Central  Google Scholar 

  • Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390:404–407

    Article  PubMed  CAS  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  • Chang MW, Grillari J, Mayrhofer C, Fortschegger K, Allmaier G, Marzban G, Katinger H, Voglauer R (2005) Comparison of early passage, senescent and hTERT immortalized endothelial cells. Exp Cell Res 309(1):121–136

    Article  PubMed  CAS  Google Scholar 

  • Chen XY, Zhang W, Zhang W, Wu S, Bi F, Su YJ, Tan XY, Liu JN, Zhang J (2006) Vaccination with viable human umbilical vein endothelial cells prevents metastatic tumors by attack on tumor vasculature with both cellular and humoral immunity. Clin Cancer Res 12(19):5834–5840

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, Hu G, Sun Y (2015) New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med 13(1):278

    Article  Google Scholar 

  • Di Ianni M, Del Papa B, De Ioanni M, Moretti L, Bonifacio E, Cecchini D, Sportoletti P, Falzetti F, Tabilio A (2008) Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 36(3):309–318

    Article  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci 92(20):9363–9367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Domagala-Kulawik J, Osinska I, Hoser G (2014) Mechanisms of immune response regulation in lung cancer. Transl Lung Cancer Res 3(1):15–22

    PubMed  CAS  PubMed Central  Google Scholar 

  • Duan HX, Cheng LM, Wang J, Hu LS, Lu GX (2006) Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood. Cell Biol Int 30(12):1018–1027

    Article  PubMed  CAS  Google Scholar 

  • Edgell CJ, McDonald CC, Graham JB (1983) Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci 80(12):3734–3737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Folkman J (1996) Fighting cancer by attacking its blood supply. Sci Am 275:150–154

    Article  PubMed  CAS  Google Scholar 

  • Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gautam A, Densmore CL, Waldrep JC (2000) Inhibition of experimental lung metastasis by aerosol delivery of PEI-p53 complexes. Mol Ther 2(4):318–323

    Article  PubMed  CAS  Google Scholar 

  • Gifford SM, Grummer MA, Pierre SA, Austin JL, Zheng J, Bird IM (2004) Functional characterization of HUVEC-CS: Ca2+ signaling, ERK 1/2 activation, mitogenesis and vasodilator production. J Endocrinol 182(3):485–499

    Article  PubMed  CAS  Google Scholar 

  • Hanagiri T, Fukumoto M, Koyanagi Y, Furutani Y, Tanaka F (2014) Regulatory T-cells and micrometastasis in lymph nodes of stage I NSCLC. Anticancer Res 34(12):7185–7190

    PubMed  CAS  Google Scholar 

  • Junttila MR, de Sauvage FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501:346–354

    Article  PubMed  CAS  Google Scholar 

  • Kusmartsev SA, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165(2):779–785

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Shen G, Nie W, Li Z, Sang Y, Zhang B, Wei Y (2014) Irradiated tumor cells of lipopolysaccharide stimulation elicit an enhanced anti-tumor immunity. J Cancer Res Clin Oncol 140(11):1815–1823

    Article  PubMed  CAS  Google Scholar 

  • Matejuk A, Leng Q, Chou ST, Mixson AJ (2011) Vaccines targeting the neovasculature of tumors. Vasc Cell 3(1):7

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mulligan JK, Young MR (2010) Tumors induce the formation of suppressor endothelial cells in vivo. Cancer Immunol Immunother 59(2):267–277

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nurieva RI, Chung Y (2010) Understanding the development and function of T follicular helper cells. Cell Mol Immunol 7(3):190–197

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Okaji Y, Tsuno NH, Saito S, Yoneyama S, Tanaka M, Nagawa H, Takahashi K (2006) Vaccines targeting tumour angiogenesis—a novel strategy for cancer immunotherapy. Eur J Surg Oncol 32(4):363–370

    Article  PubMed  CAS  Google Scholar 

  • Okaji Y, Tsuno NH, Tanaka M, Yoneyama S, Matsuhashi M, Kitayama J, Saito S, Nagura Y, Tsuchiya T, Yamada J, Tanaka J, Yoshikawa N, Nishikawa T, Shuno Y, Todo T, Saito N, Takahashi K, Nagawa H (2008) Pilot study of anti-angiogenic vaccine using fixed whole endothelium in patients with progressive malignancy after failure of conventional therapy. Eur J Cancer 44(3):383–390

    Article  PubMed  CAS  Google Scholar 

  • Rossi A, Gabbrielli E, Villano M, Messina M, Ferrara F, Weber E (2010) Human microvascular lymphatic and blood endothelial cells produce fibrillin: deposition patterns and quantitative analysis. J Anat 217(6):705–714

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibuya M (2003) Vascular endothelial growth factor receptor-2: its unique signaling and specific ligand, VEGF-E. Cancer Sci 94:751–756

    Article  PubMed  CAS  Google Scholar 

  • Sigurdsson V, Fridriksdottir AJ, Kjartansson J, Jonasson JG, Steinarsdottir M, Petersen OW, Ogmundsdottir HM, Gudjonsson T (2006) Human breast microvascular endothelial cells retain phenotypic traits in long-term finite life span culture. Vitro Cell Dev Biol Anim 42(10):332–340

    CAS  Google Scholar 

  • Sun RS, Sui JF, Chen XH, Ran XZ, Yang ZF, Guan WD, Yang T (2011) Detection of CD4+ CD25+ FOXP3+ regulatory T cells in peripheral blood of patients with chronic autoimmune urticaria. Australas J Dermatol 52(3):15–18

    Article  Google Scholar 

  • Veitonmaki N, Fuxe J, Hultdin M, Roos G, Pettersson RF, Cao Y (2003) Immortalization of bovine capillary endothelial cells by hTERT alone involves inactivation of endogenous p16INK4A/pRb. FASEB J 17(6):764–766

    PubMed  CAS  Google Scholar 

  • Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28(2):223–232

    Article  PubMed  CAS  Google Scholar 

  • Wei YQ, Wang QR, Zhao X, Yang L, Tian L, Lu Y, Kang B, Lu CJ, Huang MJ, Lou YY, Xiao F, He QM, Shu JM, Xie XJ, Mao YQ, Lei S, Luo F, Zhou LQ, Liu CE, Zhou H, Jiang Y, Peng F, Yuan LP, Li Q, Wu Y, Liu JY (2000) Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med 6(10):1160–1166

    Article  PubMed  CAS  Google Scholar 

  • Wen VW, Wu K, Baksh S, Hinshelwood RA, Lock RB, Clark SJ, Moore MA, Mackenzie KL (2006) Telomere-driven karyotypic complexity concurs with p16INK4a inactivation in TP53-competent immortal endothelial cells. Cancer Res 66(22):10691–10700

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Chang E, Cherry AM, Bangs CD, Oei Y, Bodnar A, Bronstein A, Chiu CP, Herron GS (1999) Human endothelial cell life extension by telomerase expression. J Biol Chem 274(37):26141–26148

    Article  PubMed  CAS  Google Scholar 

  • Young AT, Lakey JR, Murray AG, Mullen JC, Moore RB (2003) In vitro senescence occurring in normal human endothelial cells can be rescued by ectopic telomerase activity. Transpl Proc 35(7):2483–2485

    Article  CAS  Google Scholar 

  • Zhang H, Pan KH, Cohen SN (2003) Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci. Proc Natl Acad Sci 100(6):3251–3256

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhao Z, Yao Y, Ding Z, Chen X, Xie K, Luo Y, Zhang J, Chen X, Wu X, Xu J, Zhao J, Niu T, Liu J, Li Q, Zhang W, Wen Y, Su J, Hu B, Bu H, Wei Y, Wu Y (2011) Antitumour immunity mediated by mannan-modified adenovirus vectors expressing VE-cadherin. Vaccine 29(25):4218–4224

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Li J, Wang Z, Chen Z, Qiu J, Zhang Y, Wang W, Ma Y, Huang N, Cui K, Li J, Wei YQ (2013) Cellular immunotherapy for carcinoma using genetically modified EGFR-specific T lymphocytes. Neoplasia 15(5):544–553

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 81372246 and 81123003), National High Technology Research and Development Program of China (Nos. 2014AA020708 and 2015AA020309), China Postdoctoral Science Foundation (Grants 20120181110029), National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (No. 2009zx09503-020) and the National Basic Research Program of China (No. 2010CB529900).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Wu or Xia Zhao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X., Fang, C., Zhou, J. et al. Fusion with human lung cancer cells elongates the life span of human umbilical endothelial cells and enhances the anti-tumor immunity. J Cancer Res Clin Oncol 142, 111–123 (2016). https://doi.org/10.1007/s00432-015-2002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-2002-6

Keywords

Navigation