Skip to main content

Advertisement

Log in

Functional analyses and prognostic significance of SFRP1 expression in bladder cancer

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

We previously showed that the Wnt-signaling antagonist SFRP1 (secreted frizzled-related protein 1) is a promising marker in bladder cancer. The aim of this study was to validate the prognostic role and analyze the functional significance of SFRP1.

Methods

Four bladder cancer cell lines (RT112, RT4, J82 and BFTC905) and one urothelial cell line (UROtsa) were used for functional characterization of SFRP1 expression. Effects on viability, proliferation and wound healing were investigated, and canonical Wnt-pathway activity as well as Wnt-signaling target gene expression was analyzed. Additionally, tissue micro-arrays from two different bladder tumor cohorts were evaluated for SFRP1 expression, and associations with survival and histopathological parameters were analyzed.

Results

The cell lines RT112, RT4, J82 and UROtsa showed SFRP1 expression. In BFTC905, SFRP1 expression was inhibited by promoter hypermethylation. Wnt-pathway activity was absent in all cell lines and independent from SFRP1 expression. RT112 and BFTC905 were used for further functional characterization. SFRP1 overexpression resulted in decreased viability and migration in BFTC905 cells. Knockdown of SFRP1 expression in RT112 cells resulted only in marginal effects. In bladder tumors, SFRP1 expression was associated with lower tumor grade, but not with progression in patients with papillary bladder cancer. SFRP1 expressing papillary bladder cancer tumors also demonstrated a tendency to longer overall survival.

Conclusions

SFRP1 is reducing malignant potential of BFTC905 cells, but not by regulation of canonical Wnt-signaling pathway. Other pathways, like non-canonical Wnt or the MAPK pathway, could be activated via SFRP1-expression loss. In bladder tumors, SFRP1 has the potential to predict outcome for a subset of papillary bladder tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Carey TE, Takahashi T, Resnick LA, Oettgen HF, Old LJ (1976) Cell surface antigens of human malignant melanoma: mixed hemadsorption assays for humoral immunity to cultured autologous melanoma cells. Proc Natl Acad Sci USA 73:3278–3282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahl E et al (2007) Frequent loss of SFRP1 expression in multiple human solid tumours: association with aberrant promoter methylation in renal cell carcinoma. Oncogene 26:5680–5691. doi:10.1038/sj.onc.1210345

    Article  CAS  PubMed  Google Scholar 

  • De A (2011) Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin (Shanghai) 43:745–756. doi:10.1093/abbs/gmr079

    Article  CAS  Google Scholar 

  • Feifer AH, Taylor JM, Tarin TV, Herr HW (2011) Maximizing cure for muscle-invasive bladder cancer: integration of surgery and chemotherapy. Eur Urol 59:978–984. doi:10.1016/j.eururo.2011.01.014

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferlay J, Parkin DM, Steliarova-Foucher E (2010) Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer 46:765–781. doi:10.1016/j.ejca.2009.12.014

    Article  CAS  PubMed  Google Scholar 

  • Finch PW et al (1997) Purification and molecular cloning of a secreted. Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci USA 94:6770–6775

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hatina J, Huckenbeck W, Rieder H, Seifert HH, Schulz WA (2008) Bladder carcinoma cell lines as models of the pathobiology of bladder cancer. Review of the literature and establishment of a new progression series. Urologe A 47:724–734. doi:10.1007/s00120-008-1687-4

    Article  CAS  PubMed  Google Scholar 

  • Knowles MA (2006) Molecular subtypes of bladder cancer: Jekyll and Hyde or chalk and cheese? Carcinogenesis 27:361–373. doi:10.1093/carcin/bgi310

    Article  CAS  PubMed  Google Scholar 

  • Knowles MA (2008) Bladder cancer subtypes defined by genomic alterations. Scand J Urol Nephrol Suppl. doi:10.1080/03008880802284605

    PubMed  Google Scholar 

  • Lehmann J et al (2005) Adjuvant cisplatin plus methotrexate versus methotrexate, vinblastine, epirubicin, and cisplatin in locally advanced bladder cancer: results of a randomized, multicenter, phase III trial (AUO-AB 05/95). J Clin Oncol 23:4963–4974. doi:10.1200/JCO.2005.11.094

    Article  CAS  PubMed  Google Scholar 

  • Leibovitz A, Stinson JC, McCombs WB III, McCoy CE, Mazur KC, Mabry ND (1976) Classification of human colorectal adenocarcinoma cell lines. Cancer Res 36:4562–4569

    CAS  PubMed  Google Scholar 

  • Lodygin D, Epanchintsev A, Menssen A, Diebold J, Hermeking H (2005) Functional epigenomics identifies genes frequently silenced in prostate cancer. Cancer Res 65:4218–4227. doi:10.1158/0008-5472.CAN-04-4407

    Article  CAS  PubMed  Google Scholar 

  • Masters JR et al (1986) Tissue culture model of transitional cell carcinoma: characterization of twenty-two human urothelial cell lines. Cancer Res 46:3630–3636

    CAS  PubMed  Google Scholar 

  • Rieger KM et al (1995) Human bladder carcinoma cell lines as indicators of oncogenic change relevant to urothelial neoplastic progression. Br J Cancer 72:683–690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rossi MR et al (2001) The immortalized UROtsa cell line as a potential cell culture model of human urothelium. Environ Health Perspect 109:801–808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Salic AN, Kroll KL, Evans LM, Kirschner MW (1997) Sizzled: a secreted Xwnt8 antagonist expressed in the ventral marginal zone of Xenopus embryos. Development 124:4739–4748

    CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Shih YL, Hsieh CB, Lai HC, Yan MD, Hsieh TY, Chao YC, Lin YW (2007) SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway. Int J Cancer 121:1028–1035. doi:10.1002/ijc.22750

    Article  CAS  PubMed  Google Scholar 

  • Stoehr R et al (2004) Deletions of chromosome 8p and loss of sFRP1 expression are progression markers of papillary bladder cancer. Lab Invest 84:465–478. doi:10.1038/labinvest.3700068

    Article  CAS  PubMed  Google Scholar 

  • Takada T et al (2004) Methylation-associated silencing of the Wnt antagonist SFRP1 gene in human ovarian cancers. Cancer Sci 95:741–744

    Article  CAS  PubMed  Google Scholar 

  • Tanaka J, Watanabe T, Kanazawa T, Tada T, Kazama Y, Tanaka T, Nagawa H (2008) Silencing of secreted frizzled-related protein genes in MSI colorectal carcinogenesis. Hepatogastroenterology 55:1265–1268

    CAS  PubMed  Google Scholar 

  • Thievessen I, Seifert HH, Swiatkowski S, Florl AR, Schulz WA (2003) E-cadherin involved in inactivation of WNT/beta-catenin signalling in urothelial carcinoma and normal urothelial cells. Br J Cancer 88:1932–1938. doi:10.1038/sj.bjc.6601031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tzeng CC, Liu HS, Li C, Jin YT, Chen RM, Yang WH, Lin JS (1996) Characterization of two urothelium cancer cell lines derived from a blackfoot disease endemic area in Taiwan. Anticancer Res 16:1797–1804

    CAS  PubMed  Google Scholar 

  • Ugolini F et al (2001) WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene 20:5810–5817. doi:10.1038/sj.onc.1204706

    Article  CAS  PubMed  Google Scholar 

  • Veeck J et al (2006) Aberrant methylation of the Wnt antagonist SFRP1 in breast cancer is associated with unfavourable prognosis. Oncogene 25:3479–3488. doi:10.1038/sj.onc.1209386

    Article  CAS  PubMed  Google Scholar 

  • Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5:367–377

    Article  CAS  PubMed  Google Scholar 

  • Wu XR (2005) Urothelial tumorigenesis: a tale of divergent pathways. Nat Rev Cancer 5:713–725. doi:10.1038/nrc1697

    Article  CAS  PubMed  Google Scholar 

  • Yabe T et al (2003) Ogon/secreted frizzled functions as a negative feedback regulator of Bmp signaling. Development 130:2705–2716

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant of the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital Erlangen to P.J.G., B.W., A.H. and R.S. We are grateful to Verena Popp, Yvonne Sauermann, Birgit Meyer and Rudolf Jung for their excellent technical assistance. Further, the authors thank Stefan Schick from the Tumor Zentrum Erlangen for his help with patient follow-up data.

Conflict of interest

The author’s declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Stoehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogler, A., Kendziorra, E., Giedl, J. et al. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol 141, 1779–1790 (2015). https://doi.org/10.1007/s00432-015-1942-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-1942-1

Keywords

Navigation