Skip to main content

Advertisement

Log in

Proteinase-activated receptor 1- and 4-promoted migration of Hep3B hepatocellular carcinoma cells depends on ROS formation and RTK transactivation

  • Original Article - Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

There is growing evidence for a role of proteinase-activated receptors (PARs), a subfamily of G protein-coupled receptors, in cancer. We have previously shown that PAR1 and PAR4 are able to promote the migration of hepatocellular carcinoma (HCC) cells suggesting a function in HCC progression. In this study, we assessed the underlying signalling mechanisms.

Methods

Using Hep3B liver carcinoma cells, RTK activation was assessed by Western blot employing phospho-RTK specific antibodies, ROS level were estimated by H2DCF-DA using confocal laser scanning microscopy, and measurement of PTP activity was performed in cell lysates using 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) as a substrate.

Results

Thrombin, the PAR1 selective agonist peptide TFLLRN-NH2 (PAR1-AP), and the PAR4 selective agonist peptide, AYPGKF-NH2 (PAR4-AP), induced a significant increase in Hep3B cell migration that could be blocked by inhibitors targeting formation of reactive oxygen species (ROS), or activation of hepatocyte-growth factor receptor (Met), or platelet-derived growth factor receptor (PDGFR), respectively. The involvement of these intracellular effectors in PAR1/4-initiated migratory signalling was further supported by the findings that individual stimulation of Hep3B cells with the PAR1-AP and the PAR4-AP induced an increase in ROS production and the transactivation of Met and PDGFR. In addition, PAR1- and PAR4-mediated inhibition of total PTP activity and specifically PTP1B. ROS inhibition by N-acetyl-l-cysteine prevented the inhibition of PTP1B phosphatase activity induced by PAR1-AP and the PAR4-AP, but had no effect on PAR1/4-mediated activation of Met and PDGFR in Hep3B cells.

Conclusions

Collectively, our data indicate that PAR1 and PAR4 activate common promigratory signalling pathways in Hep3B liver carcinoma cells including activation of the receptor tyrosine kinases Met and PDGFR, the formation of ROS and the inactivation of PTP1B. However, PAR1/4-triggered Met and PDGFR transactivation seem to be mediated independently from the ROS-PTP1B signalling module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DCF:

Dichlorofluorescein

EGFR:

Epidermal growth factor receptor

FGFR:

Fibroblast growth factor receptor

GPCR:

G protein-coupled receptor

HCC:

Hepatocellular carcinoma

IGFR:

Insulin-like growth factor receptor

Met:

Hepatocyte-growth factor receptor

PAR:

Proteinase-activated receptor

PDGFR:

Platelet-derived growth fcator receptor

PLC:

Phospholipase C

PTP:

Protein tyrosine phosphatase

ROS:

Reactive oxygen species

RTK:

Receptor tyrosine kinase

VEGFR:

Vascular endothelial growth factor receptor

References

  • Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB (1979) Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature 282(5739):615–616

    Article  CAS  PubMed  Google Scholar 

  • Ahn HS, Foster C, Boykow G, Stamford A, Manna M, Graziano M (2000) Inhibition of cellular action of thrombin by N3-cyclopropyl-7-[[4-(1-methylethyl)phenyl]methyl]-7H-pyrrolo[3, 2-f]quinazoline-1,3-diamine (SCH 79797), a nonpeptide thrombin receptor antagonist. Biochem Pharmacol 60(10):1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Alexander SP, Mathie A, Peters JA (2008) Guide to Receptors and Channels (GRAC), 3rd edn. Br J Pharmacol 153(Suppl 2):S1–S209

    Article  PubMed Central  PubMed  Google Scholar 

  • Arregui CO, Gonzalez A, Burdisso JE, Gonzalez Wusener AE (2013) Protein tyrosine phosphatase ptp1b in cell adhesion and migration. Cell Adhes Migr 7:418–423

    Article  Google Scholar 

  • Barrett WC, DeGnore JP, Keng YF, Zhang ZY, Yim MB, Chock PB (1999) Roles of superoxide radical anion in signal transduction mediated by reversible regulation of protein-tyrosine phosphatase 1B. J Biol Chem 274(49):34543–34546

    Article  CAS  PubMed  Google Scholar 

  • Berdnikovs S, Pavlov VI, Abdala-Valencia H, McCary CA, Klumpp DJ, Tremblay ML, Cook-Mills JM (2012) Ptp1b deficiency exacerbates inflammation and accelerates leukocyte trafficking in vivo. J Immunol 188:874–884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bergmann S, Junker K, Henklein P, Hollenberg MD, Settmacher U, Kaufmann R (2006) PAR-type thrombin receptors in renal carcinoma cells: PAR1-mediated EGFR activation promotes cell migration. Oncol Rep 15(4):889–893

    CAS  PubMed  Google Scholar 

  • Besnier M, Galaup A, Nicol L, Henry JP, Coquerel D, Gueret A, Mulder P, Brakenhielm E, Thuillez C, Germain S et al (2014) Enhanced angiogenesis and increased cardiac perfusion after myocardial infarction in protein tyrosine phosphatase 1b-deficient mice. FASEB J 28:3351–3361

    Article  CAS  PubMed  Google Scholar 

  • Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120(3):303–313

    Article  CAS  PubMed  Google Scholar 

  • Breuhahn K, Longerich T, Schirmacher P (2006) Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene 25(27):3787–3800

    Article  CAS  PubMed  Google Scholar 

  • Camerer E (2007) Protease signaling in tumor progression. Thromb Res 120(Suppl 2):S75–S81

    Article  PubMed  Google Scholar 

  • Chandrasekharan UM, Waitkus M, Kinney CM, Walters-Stewart A, DiCorleto PE (2010) Synergistic induction of mitogen-activated protein kinase phosphatase-1 by thrombin and epidermal growth factor requires vascular endothelial growth factor receptor-2. Arterioscler Thromb Vasc Biol 30(10):1983–1989

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang Y, Ceacareanu B, Zhuang D, Zhang C, Pu Q, Ceacareanu AC, Hassid A (2006) Counter-regulatory function of protein tyrosine phosphatase 1b in platelet-derived growth factor- or fibroblast growth factor-induced motility and proliferation of cultured smooth muscle cells and in neointima formation. Arterioscler Thromb Vasc Biol 26:501–507

    Article  CAS  PubMed  Google Scholar 

  • Darmoul D, Gratio V, Devaud H, Lehy T, Laburthe M (2003) Aberrant expression and activation of the thrombin receptor protease-activated receptor-1 induces cell proliferation and motility in human colon cancer cells. Am J Pathol 162(5):1503–1513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daub H, Weiss F, Wallasch C, Ullrich A (1996) Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379(6565):557–560

    Article  CAS  PubMed  Google Scholar 

  • Daub H, Wallasch C, Lankenau A, Herrlich A, Ullrich A (1997) Signal characteristics of G protein-transactivated EGF receptor. EMBO J 16(23):7032–7044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y, Reich R, Vlodavsky I, Bar-Shavit R (1998) Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 4(8):909–914

    Article  CAS  PubMed  Google Scholar 

  • Even-Ram SC, Maoz M, Pokroy E, Reich R, Katz BZ, Gutwein P, Altevogt P, Bar-Shavit R (2001) Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the alpha v beta 5 integrin. J Biol Chem 276(14):10952–10962

    Article  CAS  PubMed  Google Scholar 

  • Fischer O, Giordano S, Comoglio P, Ullrich A (2004) Reactive oxygen species mediate Met receptor transactivation by G protein-coupled receptors and the epidermal growth factor receptor in human carcinoma cells. J Biol Chem 279(28):28970–28978

    Article  CAS  PubMed  Google Scholar 

  • Frijhoff J, Dagnell M, Godfrey R, Ostman A (2014) Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Antioxid Redox Signal 20(13):1994–2010

    Article  CAS  PubMed  Google Scholar 

  • Giannoni E, Chiarugi P, Cozzi G, Magnelli L, Taddei ML, Fiaschi T, Buricchi F, Raugei G, Ramponi G (2003) Lymphocyte function-associated antigen-1-mediated T cell adhesion is impaired by low molecular weight phosphotyrosine phosphatase-dependent inhibition of FAK activity. J Biol Chem 278(38):36763–36776

    Article  CAS  PubMed  Google Scholar 

  • Gieseler F, Ungefroren H, Settmacher U, Hollenberg MD, Kaufmann R (2013) Proteinase-activated receptors (PARs)—focus on receptor-receptor-interactions and their physiological and pathophysiological impact. Cell Commun Signal 11:86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giordano S, Columbano A (2014) Met as a therapeutic target in HCC: facts and hopes. J Hepatol 60(2):442–452

    Article  CAS  PubMed  Google Scholar 

  • Grab D, Garcia-Garcia J, Nikolskaia O, Kim Y, Brown A, Pardo C, Zhang Y, Becker K, Wilson B, de A Lima A, Scharfstein J, Dumler J (2009) Protease activated receptor signaling is required for African trypanosome traversal of human brain microvascular endothelial cells. PLoS Negl Trop Dis 3(7):e479

    Article  PubMed Central  PubMed  Google Scholar 

  • Haj FG, Markova B, Klaman LD, Bohmer FD, Neel BG (2003) Regulation of receptor tyrosine kinase signaling by protein tyrosine phosphatase-1B. J Biol Chem 278(2):739–744

    Article  CAS  PubMed  Google Scholar 

  • Han C, Michalopoulos G, Wu T (2006) Prostaglandin E2 receptor EP1 transactivates EGFR/MET receptor tyrosine kinases and enhances invasiveness in human hepatocellular carcinoma cells. J Cell Physiol 207(1):261–270

    Article  CAS  PubMed  Google Scholar 

  • Heneberg P, Dráber P (2005) Regulation of cys-based protein tyrosine phosphatases via reactive oxygen and nitrogen species in mast cells and basophils. Curr Med Chem 12(16):1859–1871

    Article  CAS  PubMed  Google Scholar 

  • Henrikson KP, Salazar SL, Fenton JW, Pentecost BT (1999) Role of thrombin receptor in breast cancer invasiveness. Br J Cancer 79(3–4):401–406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hollenberg MD, Saifeddine M (2001) Proteinase-activated receptor 4 (PAR4): activation and inhibition of rat platelet aggregation by PAR4-derived peptides. Can J Physiol Pharmacol 79(5):439–442

    Article  CAS  PubMed  Google Scholar 

  • Hollenberg M, Compton S, International Union of Pharmacology XXVIII (2002) Proteinase-activated receptors. Pharmacol Rev 54(2):203–217

    Article  CAS  PubMed  Google Scholar 

  • Ishihara H, Connolly A, Zeng D, Kahn M, Zheng Y, Timmons C, Tram T, Coughlin S (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386(6624):502–506

  • Kaufmann R, Rahn S, Pollrich K, Hertel J, Dittmar Y, Hommann M, Henklein P, Biskup C, Westermann M, Hollenberg M, Settmacher U (2007) Thrombin-mediated hepatocellular carcinoma cell migration: cooperative action via proteinase-activated receptors 1 and 4. J Cell Physiol 211(3):699–707

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann R, Oettel C, Horn A, Halbhuber KJ, Eitner A, Krieg R, Katenkamp K, Henklein P, Westermann M, Böhmer FD, Ramachandran R, Saifeddine M, Hollenberg MD, Settmacher U (2009) Met receptor tyrosine kinase transactivation is involved in proteinase-activated receptor-2-mediated hepatocellular carcinoma cell invasion. Carcinogenesis 30(9):1487–1496

    Article  CAS  PubMed  Google Scholar 

  • Knowles BB, Howe CC, Aden DP (1980) Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209(4455):497–499

    Article  CAS  PubMed  Google Scholar 

  • Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273(25):15366–15372

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Tan HT, Chung MC (2014) Prognostic biomarkers for prediction of recurrence of hepatocellular carcinoma: current status and future prospects. World J Gastroenterol 20(12):3112–3124

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang F, Lee SY, Liang J, Lawrence DS, Zhang ZY (2005) The role of protein-tyrosine phosphatase 1b in integrin signaling. J Biol Chem 280:24857–24863

    Article  CAS  PubMed  Google Scholar 

  • Little PJ, Burch ML, Al-aryahi S, Zheng W (2011) The paradigm of G protein receptor transactivation: a mechanistic definition and novel example. Sci World J 11:709–714

    Article  CAS  Google Scholar 

  • Liu F, Sells MA, Chernoff J (1998) Protein tyrosine phosphatase 1b negatively regulates integrin signaling. Curr Biol 8:173–176

    Article  CAS  PubMed  Google Scholar 

  • Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53(2):245–282

    CAS  PubMed  Google Scholar 

  • Mahadev K, Wu X, Zilbering A, Zhu L, Lawrence JT, Goldstein BJ (2001) Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 276(52):48662–48669

    Article  CAS  PubMed  Google Scholar 

  • Mertins P, Eberl HC, Renkawitz J, Olsen JV, Tremblay ML, Mann M, Ullrich A, Daub H (2008) Investigation of protein-tyrosine phosphatase 1B function by quantitative proteomics. Mol Cell Proteomics 7(9):1763–1777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mondol AS, Tonks NK, Kamata T (2014) Nox4 redox regulation of ptp1b contributes to the proliferation and migration of glioblastoma cells by modulating tyrosine phosphorylation of coronin-1c. Free Radic Biol Med 67:285–291

    Article  CAS  PubMed  Google Scholar 

  • Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994) Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci USA 91(20):9208–9212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oseini AM, Roberts LR (2009) PDGFRalpha: a new therapeutic target in the treatment of hepatocellular carcinoma? Expert Opin Ther Targets 13(4):443–454

    Article  CAS  PubMed  Google Scholar 

  • Ostman A, Frijhoff J, Sandin A, Böhmer FD (2011) Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem 150(4):345–356

    Article  PubMed  Google Scholar 

  • Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD (2012) Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 11(1):69–86

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen UB, Vouret-Craviari V, Jallat S, Schlesinger Y, Pagès G, Pavirani A, Lecocq JP, Pouysségur J, Van Obberghen-Schilling E (1991) cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2 + mobilization. FEBS Lett 288(1–2):123–128

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17(2):183–189

    Article  CAS  PubMed  Google Scholar 

  • Rudroff C, Seibold S, Kaufmann R, Zetina CC, Reise K, Schäfer U, Schneider A, Brockmann M, Scheele J, Neugebauer EA (2002) Expression of the thrombin receptor PAR-1 correlates with tumour cell differentiation of pancreatic adenocarcinoma in vitro. Clin Exp Metastasis 19(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Salmeen A, Barford D (2005) Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7(5–6):560–577

    Article  CAS  PubMed  Google Scholar 

  • Sambrano GR, Huang W, Faruqi T, Mahrus S, Craik C, Coughlin SR (2000) Cathepsin G activates protease-activated receptor-4 in human platelets. J Biol Chem 275(10):6819–6823

    Article  CAS  PubMed  Google Scholar 

  • Sandin A, Dagnell M, Gonon A, Pernow J, Stangl V, Aspenström P, Kappert K, Ostman A (2011) Hypoxia followed by re-oxygenation induces oxidation of tyrosine phosphatases. Cell Signal 23(5):820–826

    Article  CAS  PubMed  Google Scholar 

  • Sangwan V, Paliouras GN, Abella JV, Dubé N, Monast A, Tremblay ML, Park M (2008) Regulation of the Met receptor-tyrosine kinase by the protein-tyrosine phosphatase 1B and T-cell phosphatase. J Biol Chem 283(49):34374–34383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scarborough RM, Naughton MA, Teng W, Hung DT, Rose J, Vu TK, Wheaton VI, Turck CW, Coughlin SR (1992) Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem 267(19):13146–13149

    CAS  PubMed  Google Scholar 

  • Schuepbach RA, Riewald M (2010) Coagulation factor Xa cleaves protease-activated receptor-1 and mediates signaling dependent on binding to the endothelial protein C receptor. J Thromb Haemost 8(2):379–388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siegbahn A, Johnell M, Nordin A, Aberg M, Velling T (2008) TF/FVIIa transactivate PDGFRbeta to regulate PDGF-BB-induced chemotaxis in different cell types: involvement of Src and PLC. Arterioscler Thromb Vasc Biol 28(1):135–141

    Article  CAS  PubMed  Google Scholar 

  • Steinhoff M, Buddenkotte J, Shpacovitch V, Rattenholl A, Moormann C, Vergnolle N, Luger T, Hollenberg M (2005) Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response. Endocr Rev 26(1):1–43

    Article  CAS  PubMed  Google Scholar 

  • Stock P, Monga D, Tan X, Micsenyi A, Loizos N, Monga SP (2007) Platelet-derived growth factor receptor-alpha: a novel therapeutic target in human hepatocellular cancer. Mol Cancer Ther 6(7):1932–1941

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai M (2009) Vascular signaling through G protein-coupled receptors: new concepts. Curr Opin Nephrol Hypertens 18(2):153–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venepalli NK, Goff L (2013) Targeting the HGF-cMET axis in hepatocellular carcinoma. Int J Hepatol 2013:341636

    Article  PubMed Central  PubMed  Google Scholar 

  • Villanueva A, Llovet JM (2011) Targeted therapies for hepatocellular carcinoma. Gastroenterology 140(5):1410–1426

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vu T, Hung D, Wheaton V, Coughlin S (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64(6):1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Wetzker R, Böhmer F (2003) Transactivation joins multiple tracks to the ERK/MAPK cascade. Nat Rev Mol Cell Biol 4(8):651–657

    Article  CAS  PubMed  Google Scholar 

  • Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC (1998) Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci USA 95(12):6642–6646

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao P, Metcalf M, Bunnett NW (2014) Biased signaling of protease-activated receptors. Front Endocrinol (Lausanne) 5:67

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Beate Schulze, Elke Oswald (Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital and Frank Steiniger (Electron Microscopy Center, Jena University Hospital) for the excellent technical assistance. This work was supported by the Deutsche Krebshilfe (Grant 108809, to R.K. and U.S.).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Kaufmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mußbach, F., Henklein, P., Westermann, M. et al. Proteinase-activated receptor 1- and 4-promoted migration of Hep3B hepatocellular carcinoma cells depends on ROS formation and RTK transactivation. J Cancer Res Clin Oncol 141, 813–825 (2015). https://doi.org/10.1007/s00432-014-1863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1863-4

Keywords

Navigation